Look-Ahead Simulation of Apparel Manufacturing
Final Report

A Short Term Research Development Task
Proposed Under DLA900-87-D-0017
Delivery Order #0003

R.P. Pargas |
Associate Professor of Computer Science

Clemson Apparel Research
Clemson University
Clemson, South Carolina

Table of Contents
1. Background and Research Objectives
2. Results
3. Conclusions
4. Summary

S. Appendices

19970903 116

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collaction of information Is estimated to average 1 hour per responsa, including the time for reviewing Instructions, searching exsting data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefierson
Davls Highway, Sulte 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reductlon Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3.
Blank) 7 June 1997

REPORT TYPE AND DATES COVERED
Final 10/1/88 - 4/30/94

4. TITLE AND SUBTITLE
Look Ahead Simulation of Apparel Manufacturing

5. FUNDING NUMBERS
DLAS00-87-D-0017
Del Order # 0003

i 6. AUTHORS
| Dr. Roy P. Pargas
Dept. of Computer Science

3 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
3 Clemson Apparel Research / Defense Personnel Supply Center
| Clemson University /2800 South 20" Street
500 Lebanon Road / Philadelphia, PA 19101-8419
Pendleton, SC 29670

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The approach taken was to build a simulator of apparel manufacturing tool and to measure the impact that such a tool would have on actual operations.
The simulator runs on top of a real-time system which continually monitors the progress of operations on the shop-floor. The real-time system collects
a wide variety of information as it tracks bundles of cloth making progress from workstation to workstation. The real-time systems monitors and reports on
information such as operator efficiencies, start and stop times of operations on each bundle, the amount of work produced by each operator, which
operator is assigned to each workstation, and the status of each bundle, cut and order.

14. SUBJECT TERMS

15. NUMBER OF PAGES
64

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

unclassified unclassified

19. SECURITY CLASSIFICATION { 20. LIMITATION OF ABSTRACT
OF ABSTRACT unclassified

unclassified

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-1
298-102

1. Background and Research Objectives

Between 1990 and 1993, the Defense Logistics Agency funded a project to study ways in
which government contractors, primarily apparel manufacturers, could better manage and
control their shop-floor operations. The primary objective of this research project was to
explore the feasibility of using a simulation of manufacturing to assist management in the
administration and control of operations on the shop floor. The question that the
researchers were trying to answer was rather simple:

Does a tool that simulates and predicts short term performance of shop-floor
operations help a supervisor (or higher level manager) perform his or her job?

Details on the overall goals and design of this simulation software are given in a paper
entitled Production Scheduling Through Distributed Simulation given in Appendix A.

The approach taken was to build such a tool, a simulator of apparel manufacturing,
and to measure the impact that such a tool would have on actual operations. Figure 1
shows a diagram of the overall design of the simulator. The simulator runs on top of a
real-time system which continually monitors the progress of operations on the shop-floor.
The real-time system collects a wide variety of information as it tracks bundles of cloth
making progress from workstation to workstation. The real-time system monitors and
reports on such information as:

1. operator efficiencies,

2. start and stop times of operations on each bundle,

3. the amount of work produced by each operator,

4. which operator is assigned to each workstation, and

5. the status of each bundle, cut, and order.
The simulator periodically takes a snapshot of the files produced by the real-time system
and moves time forward using the information. In this manner, the simulator predicts
what the performance of the shop-floor will be in the near future. The output of the
simulator is an immediate report on a number of metrics. These metrics give the user (the
shop-floor supervisor) a clear graphical report on what to expect in the near-term, thus

allowing the user ample time to anticipate and to avert potential problems down the road.

The steps taken in this research project were as follows:

4.

Interview several plant managers concerning their production goals. The objective
is to collect a set of performance metrics representing a wide class of objective
functions for optimization.

Develop the simulation software.

Demonstrate the software to apparel manufacturers, specifically to shop-floor
supervisors and others directly involved in production.

Collect feedback regarding the perceived potential of such a software package.

The remainder of this report details each of the steps above and summarizes the results
obtained by this study. Conclusions are presented, and recommendations for possible
future work are outlined.

Real-Time
System

Shop-Floor Operations

Figure 1

2. Results

2.1 Performance Metrics

The first data collected for this study were the performance metrics. These metrics were
summarized by the researchers in a paper (see Appendix B) entitled Shop-Floor
Performance Metrics for the Apparel Industry that was published in the International
Journal of Clothing Science and Technology 3, No. 1, 1991.

A classification of the performance measures used in this study is given below:

1.

Waiting time. Sub-assemblies often wait in queues before they are operated upon.
A manager is interested in knowing whether a particular cut is being inordinately
delayed or whether employees should be moved to places where excessive work
has accumulated.

Cost. The expenditure incurred during job processing is identified by these
metrics. As manufacturing proceeds, direct labor adds value to each product.
When machines break down or employees wait idly for work or training is
conducted, excess cost is accrued.

Flow time. This term quantifies the time jobs take to be worked on. One can
compute the percentage of time that jobs wait, the average amount of value added
to the jobs while they are on the shop-floor, etc.

Lateness. This gives the actual and estimated completion time and date of cuts
and the amount by which they are early or late. Late jobs can incur penalties
whereas jobs which are early may add to inventory costs.

Machine Utilization. The time wasted due to machine malfunction or machine
idleness gives a measure of machine utilization.

Labor Utilization. The time spent by employees being productive or non-
productive off-standard gives a measure of the utilization of labor. This time
measure is similar to excess cost, a dollar measure.

Production. This measures work accomplished in terms of the SAMS (standard
allowed minutes for an operation) produced.

Efficiency. This gives a comparative figure for actual output versus expected
maximum output.

Each classification contains several metrics giving a total of seventy-nine metrics listed on
page 20 of the paper in Appendix B.

A plant supervisor may select from among these seventy-nine metrics those which he or
she feels is most important in his or her plant. All seventy-nine are calculated by the
simulator by default.

2.2. Development of Simulation Software

The simulation software is complete. The software runs on a PC attached to a system of
sixteen multiprocessors. It runs with a sample of data obtained from a real-time system
and simulates the operations of a shop-floor for apparel manufacturing.

The output of the simulation software is a collection of seventy-nine metrics as described
in Section 2.1 above. Any subset of the metrics may be selected by the user; the metrics
are presented in graphical form.

The user may modify parameters of the software and may re-run the simulation.
Modifications include adding or removing operators to the plant, adding or removing
workstations, scheduling meetings, changing priorities of the cuts through the plant,
scheduling new cuts for production, etc. Details on the various parameters available to
the user are given in the paper entitled Near-Term Distributed Simulation of Apparel
Manufacturing in Appendix C. These parameters allows the user to ask what-if questions
and quickly (within one minute) view the results of the changes.

The software is mature and can be implemented at an apparel plant which already has a
real-time system in place.

Some of the problems encountered in this project and associated with a distributed
simulation, i.e., a simulation implemented on a multiprocessor system, are listed in papers
entitled Solving Synchronication Problems in Rapid Simulation of a Manufacturing Shop
Floor (Appendix D) and Guidelines for Dynamic Load Balancing in Conservative
Distributed Simulations (Appendix E).

2.3. Demonstration of software to apparel manufacturers

The software was demonstrated to a large number of apparel manufacturing plant
managers and administrators through seminars at Clemson Apparel Research and through
visits conducted by the researchers at apparel plants in South Carolina and Alabama.

The administrators of one plant in particular, American Apparel, Inc. of Selma, Alabama
expressed much interest in the simulation software. American Apparel has indicated that
they would be very interested in having the simulation software implemented at plant as a
demonstration site. If such an implementation were done, other government contractors
would be able to view the simulation in use at an actual plant. This is discussed further in
Sections 3.5 and 3.6 below.

3. Conclusions

There are six clear conclusions obtained from this study. They are listed and briefly
described below.

3.1. The design of the simulator is well-understood and mature.

The design of the simulator evolved over the period of the research into a clean, clear,
simple model. At the moment that the user wants to use the tool, the simulator makes a
copy of all of the relevant files continually being updated by the real-time system. This is,
in effect, a snapshot of the status of the shop-floor, including where each and every bundle
is on the floor, how much work has been performed on it, how much work remains to be
performed on it, which operator is currently assigned to each workstation, how efficient
each operator is, whether an operator is on- or off-standard, and which workstations are in
operation. These are the raw materials used by the simulator in performing its task.

The simulator simply takes all of this information and moves time forward, one unit at
a time. At each time unit, the simulator applies each operator’s efficiency to the bundle he
or she is currently working on; this determines how much work is produced on the bundle
in the time unit. As each bundle is completed, the simulator first decides where (to which
operation) to send the bundle and then assigns a new bundle to the operator. Because the
simulator knows the precise rate of work (efficiency) of each operator, it can accurately
predict how much work flows through each workstation. This process is applied to each
operator for a single time unit. The simulator then increments simulated time by one and
repeats the process.

When simulated time reaches the final time specified by the user, the simulator will
have the predicted the new status of each bundle on the floor, how much work was done
on it during simulated time, how much work still remains, etc. In short, at the end of the
simulated time interval, the files generated by the simulator comprise a snapshot of the
shop floor at the future time specified by the user.

The process is simple and well understood. As a result, the results of the simulator are
accurate and reproduceable.

3.2. Inexpensive hardware technology available today has more than sufficient power to
run the simulation..

At the time of the research, a PC would have been too slow to provide the speed
necessary for the simulation. As described in Section 3.1, each bundle must be moved
forward at every time unit. This translates into hundreds of millions of computer
operations for a shop-floor with 500 workstations and for a simulated time of five days.
The research built the performance around a sixteen-processor multiprocessor system in
order to provide the speed required. The decision was correct. The computation time to
conduct a simulation with 500 workstation was consistently under one minute for a 5-day

simulation. On a single PC, the computation times for a similar simulation would range
from 6 to 10 minutes.

Much has changed in PC technology since then. A single Intel Pentium Pro-based PC
today outperforms the multiprocessor system used at the time of the research. If a real-
time system is already in place at an apparel manufacturing plant, the only hardware
requirement for the simulator is a Pentium Pro. The cost, therefore, is nominal; a $2500
system will cover all hardware requirements. This includes the 2 gigabyte hard disk that
would be required to hold the significant number of files used by the simulator.

As shown in Figure 1, the simulator running on the PC is directly connected to the
central server of the real-time system. When called upon to perform a simulation, the PC
copies into its hard disk several files from the server. The simulator then begins
operations on its own copies of the files, never disturbing the original real-time system
files.

In the process of simulating shop-floor operations, the simulator changes the contents
of the files. For example, in simulated time, bundles are moved from workstation to
workstation. This must all be reflected in the bundle information file. Simply put, the
simulator takes a snapshot of the shop-floor and moves simulated time forward very
rapidly. At the end of the simulation, summary reports in the form of graphs of the
metrics are presented to the user giving the user an accurate prediction of what the shop-
floor looks like in the near future.

3.3. The perceived and potential benefits of such a tool for an apparel manufacturer are
substantial.

“Control is the key to proper plant administration. And the right information
provides that control.” This was told to the researchers on this project by one of the plant
managers with whom they spoke.

The simulator gives the plant supervisor this control. The supervisor does not need to
predict what will happen in the long term, i.e., in two weeks or more. The supervisor has
to know what will happen in the next few hours, the next few days, or the next week.
With such a capability, the supervisor will be able to anticipate and ideally avoid
bottlenecks in the manufacturing process.

On the shop-floor, such bottlenecks can appear for any of a number of reasons: () an
employee at a critical operation may not show up for work that day, (b) a workstation
may have broken down and will not be available for another 24 hours, (c) the new piece of
equipment just installed may be producing piece goods at a much faster rate than the older
equipment it replaced, (d) several new employees may still have low efficiencies due to
lack of experience, etc. An experienced supervisor in a small plant will be able to
anticipate and even prevent manufacturing problems due to some of these occurrences,
but in a large (greater than five hundred workstations) manufacturing plant, it is unrealistic

to expect the supervisor to be able to know ahead of time all possible scenarios resulting
from an unusual or unexpected event.

A simulation tool alleviates this situation significantly because the supervisor can play
“what if” games, modifying the parameters of the simulation and evaluating their effects.
The tool is powerful because it provides the right information to the shop-floor
supervisor, and thereby offers control.

3.4. The eagerness of apparel manufacturers for a simulation tool is great.

Virtually every plant manager with whom the investigators spoke expressed interest in
having such a simulator implemented at their plant. The managers with whom the
investigators spoke most seriously were (1) Coastal Carolina, Inc. (2) National Apparel,
Inc., and (3) American Apparel, Inc., all located in Selma, Alabama. Of the three, only
American Apparel is currently operating at a high-enough level of production that could
take advantage of a simulation tool.

Moreover, the investigators presented the concept of a simulation tool at many
seminars at Clemson Apparel Research. The response from managers of the larger
manufacturing plants was universal: simulation software would be a very powerful tool for
anticipating and avoiding manufacturing problems.

Ramtex, Inc., a textile manufacturing plant in Ramseur, NC, has approached
researchers at Clemson Apparel Research discussing the feasibility of implementing a
similar simulation tool adapted, not to apparel, but to textile manufacturing. The
administrators at Ramtex have a problem with scheduling because the demand for their
textile and thread is so great that they are operating near 100% capacity. As a result it is
critical that they schedule new orders very carefully. If they are not careful, they will not
make full use of their equipment and therefore not be able to make their delivery
deadlines. To them, the need for a simulation tool that assists in scheduling is of utmost
importance.

3.5. The manufacturing sophistication of at least one apparel manufacturer is at a level
ready for simulation software.

The situation at American Apparel, Inc., of Selma, Alabama is ideal for the
implementation of a simulator. There are several reasons for this.

1. The plant is technologically sophisticated.

2. The plant already has a real-time system. There is a project funded by the Air
Force currently being implemented at American Apparel. Part of the project
involves implementation of a real-time system at the plant. Real-time systems are
already in place both at the Selma and the Fort Deposit plants.

3. The plant administration is very willing to work with a simulator in production
planning. Mr. J. Hodo of American Apparel has long expressed interest in the
implementation of the simulator developed by Clemson Unversity at the Selma
plant after the completion of the Air Force-sponsored project. He has verbally told
researchers at Clemson University that American Apparel would be very willing to
participate in a project that resulted in the implementation of a simulator for
manufacturing.

4. The size of American Apparel is large enough to justify a simulator.

5. The company is a government contractor. Mr. J. Hodo of American Apparel has
also said that he would be willing for American Apparel to become a showcase for
other government contractors; officials from other companies could visit American
Apparel to see how a real-time system and a simulator can be combined to give
plant administration a tool for predicting near-term plant performance.

6. The timing is perfect. The Air Force project at American Apparel will be
completed by the end of June 1997. The timing is perfect for the msta]latlon of a
simulator to work with the real-time system already in place.

3.6. The implementation of the simulation tool at American Apparel, Inc. can be
performed at nominal cost.

Because the technology is already developed, the software mature, and the
implementation well-understood, the cost of implementing the simulation would be
nominal. The time to implement and test could be done within six months. For example,
if the implementation were started on 1 January 1998, the simulator would be completely
installed, tested, and in daily use at American Apparel by 30 June 1998.

4. Summary
The simulation software proposed in this project is complete.
1. Itruns on a PC attached to a system of multiprocessors.

At the time that the software was developed, multiprocessors were required to provide
the speed that the simulation required. Because of the development of PCs since that
time, the use of multiprocessors is no longer required. The software can efficiently run on
a standard Pentium-based PC running Windows NT or Windows 95. The computation
speed provided by current PCs is sufficient to provide the response time required by the
simulation.

2. The simulation has been received well by managers and plant supervisors of apparel
manufacturing plants.

Virtually all apparel plant managers and administrators, to whom the simulation
software was demonstrated, appreciated the benefits that such a tool can provide. The
software could be used immediately by plant supervisors in their day-to-day management
of an apparel plant.

Plant managers of a textile manufacturing plant, Ramtex, Inc. of Ramseur, NC have
also expressed interest in such a simulation tool and have discussed the possibility of
implementing such software in their plant.

3. The software is mature and the design is well-understood.

It can be implemented immediately at an apparel plant which already has a real-time
system implemented.

4. One candidate plant, American Apparel, Inc., of Selma, Alabama, is an ideal plant to
implement the software.

American Apparel already has a real-time system implemented. The administrators of
American Apparel have expressed great interest in participating in a project that would
implement the simulation at their plant and to demonstrate the use of the simulation to
other government contractors across the country.

Recommendation:
The investigators recommend that the simulation software developed in this project be

implemented at American Apparel. Such an implementation should take no more than six
months and can be performed at nominal cost.

Appendix A

Proceedings of the Fourth International Conference

L

Lxpert Systems
1n
Production and Operations
-~ Management

Martin D. Goslar
Editor

May 14-16, 1990
Hilton Head ¥sland, South Carolina

Sponsored b
Management Science %epartment
College of Business Administration
University of South Carolina

In cooperation with
American Association for Artificial Inteliigence
Operations Management Association « TIMS Colleic on Production and Operations Management
anic] Management Center, College of Business Administration, University of South Carolina

PRODUCTION SCHEDULING THROUGH DISTRIBUTED SIMULATION

Roy P. Pargas and John C. Peck
Department of Computer Science
Clemson University
Clemson, SC 29634-1906

EXTENDED ABSTRACT
1.0 INTRODUCTION

Clemson University holds a contract with the Defense Logistics Agency to help
improve the competitiveness of the US apparel industry through the use of advanced
manufacturing technology and associated management techniques. As part of this contract,
$1,500,000 each year is available for research projects intended to improve the productivity
of apparel equipment and personnel. The authors of this paper, in cooperation with
researchers at the University of Southwestern Louisiana, are engaged in one of several such
research projects to develop a simulation software tool intended to assist middle to high
level management in planning and scheduling work, personnel, and machines in the "near"
term. The near term could be the next week, next day or next hour, depending on the
frequency of use of the software tool.

1.0 THE PROBLEM

Apparel plants who have scheduling problems operate on a larger scale than
manufacturing plants in many other industries. A typical apparel plant of this type would
have more than 400 direct labor (incentive) employees with perhaps 500 machines {(some
large plants have 1500+ employees). Both employees and machines are capable of
performing multiple operations, but only a small percentage of the total operations required
to manufacture a particular garment. Active on the shop floor at any one time might be
100 or more production lots (orders) eachi consisting of perhaps 200 bundles of garment
parts, each consisting of 5 or more subassemblies, each réquiring 1 to 20 operations.
Production lots are possibly of different styles, meaning the operations and sequencing of
operations are different. Bundle subassemblies flow through the manufacturing process in
parallel and join (merge), as operations are completed, to produce finished garments. The
matching of subassemblies from parent bundles is important since color shading variations
will be noticeable otherwise. Since employees and machines have multiple, but limited,
skills and capabilities, load balancing of these resources against required work is a major
problem,

2.0 PERFORMANCE METRICS
Since the ultimate goal in production scheduling is to improve the operation of a

plant, the first question which must be asked is "How do you know if a change in an
operational plan produces a better or worse schedule?" The performance goals of

90

management, and at different plants at different points in time, might produce drastically
different answers to the question. At one point in time, the goal might to be maximize
the output of size 16/34 red button-down collar shirts while at another time it might be to
minimize the work-in-process inventory Jevel subject to keeping the average efficiency of
employees above 95%. In fact, the answer might change if management knew the
optimization limits on the scheduling goals they might pick! The point of this discussion
is that in general, one cannot always predefine an objective function for optimization. The
process of measuring performance, while working toward optimizing any objective function,
might change the function. This is a variation of what the physicists call the Heisenberg
Uncertainty Principle or what the industrial engineers call the Hawthorne Principle. The
process of measuring an entity changes the behavior of the entity being measured.

The first step taken in this research project was to interview numerous plant
managers concerning goals to produce a set of performance metrics representing a wide
class of objective functions for optimization. This set currently contains about 75 metrics
which relate to the performance of the plant, each department, each lot and each style in-
process. Employee performance employee pay, standard minutes produced, progress of
specific work units, excess costs, lateness of orders and work-in-process inventory levels
are but a few of the variables measured. This set of performance metrics is maintained
during the execution of the simulator and displayed dynamically in the form of graphs as
the values change. Multiple windows allow the simulator user to monitor any collection of
metrics (subject to screen size limitations) as the simulation progresses.

3.0 SIMULATION AS A NEAR-TERM PLANNING TOOL

The approach taken by many simulations is to use statistical distributions to
approximate variables such as job arrival and service time as well as employee efficiency,
etc. The primary reason for this approach is that no real data is available to provide
accurate values for these variables. The approach taken in this simulation is to use the
large volume of data produced by, a real-time shop floor control system (marketed by
Foxfire Technologies Corporation and installed in several apparel plants in the US), which
represents the current state of the apparel plant, to define the current state of the
simulation. This real-time system collects data through use of a device at each
workstation concerning employees, lots, bundles, subassemblies, and operation as work
progresses through the plant.

The operation of the simulator is as follows. The simulation operator will define a
plan for operation of the plant in the near-term (see above). The starting point for the plan
is the current state of plant as represented by data contained in the real-time system. The
operator then specifies changes to the plan which he wishes to implement at given times.
New work might arrive at mid morning, personnel might be reassigned to different
operations at specified times, machines might be taken out of service for preventive
maintenance, new machines which operate at greater speeds might be placed into
(simulated) service, etc. With this new plan for operation (usually a small variation in the

91

real plan currently in effect) the simulation will begin execution. The operator can request
that the plant be simulated until a specified point in time, for a specified duration or until
an interrupt key is pressed. During this period of time the graphical display of
performance metrics will be dynamically updated. If the operator is unhappy with the
values of certain metrics, he might choose to "rollback" the simulation to a specified point
in time and rerun with a new plan. By this interactive and iterative technique, a plan
which best suits management can be developed. This plan can then be printed and used as
an order (or recommendation) to shop floor supervisory personnel. Monitoring of the actual
shop floor performance is already provided as part of the Foxfire system.

The primary objective, therefore, is to allow the user to develop a production
scheduling plan interactively, in the same manner as one works with a spreadsheet
program. In a spreadsheet, the user can change a single cell, and every other cell whose
value depends upon it changes automatically. The user can immediately see the "bottom
line" result of his single change. The user of this simulation will be able to enjoy the same
capability, i.e., to be able to change one part of his current production plan (say, replace
Mary with Suzi on Machine A at 10:00 a.m.) and be able to see, very quickly, the effect
of the change on overall production. The information the user receives will be the metric
information he has selected to view. If he is happy with the new results, the user may opt
to keep the employee change in his plan. Otherwise, he may delete the change and
continue try other modifications to his plan.

4.0 DISTRIBUTED SIMULATION

A major concern in this simulation, however, is computer response time. A
simulation of a large apparel manufacturing plant with 500 or more workstations is
anticipated to require much more computing power than is available on 2 PC, even on the
latest models such as the IBM PS/2 family, some of which use the very fast Intel 80386/387
processors. For this reason, the simulation is being developed on a distributed memory
multiprocessor system. The multiprocessor consists of seventeen INMOS T-800 processors,
called Transputers. Each Transputer has two Mbytes of memory and is slightly more
powerful than an Intel 80386/387. Acting as a front-end processor which accepts input
from, and provides graphics output to the user, is a standard PC, a COMPAQ Deskpro
386/25. The design calls for the simulation to execute entirely on sixteen of the seventeen
Transputers. The results are collected by the seventeenth Transputer and sent to the PC
for graphical display. Such a system should be able to deliver the speed necessary to make
this simulation useful.

4.1 Synchronization Problems

The decision to develop a distributed simulation created two new problems which
do not exist on single processor implementations. The first results from the fact that each
processor is working asynchronously with its own logical clock. The processors
communicate with each other by passing messages. Each of these messages carries a time-

stamp, the simulated time at which the information in the message was generated. If a
processor gets too far ahead in simulated time, it is possible that it will receive a message
from another processor in the (simulated) past. Had the processor received the message
earlier, the simulation within this processor may have proceeded differently. The result,
of course, is a potentially incorrect simulation.

Several solutions to the synchronization problem in distributed simulations have been
proposed in the literature. One class of solutions, called conservative or pessimistic, allows
each processor to proceed only when it is guaranteéd that there is no possibility of
receiving a message out of time-stamp order. One specific algorithm suggests that
processors generate and send null, or empty, messages which carry nothing more than a
time-stamp. The purpose is simply to broadcast each processor's current time to other
processors. Although this does solve the problem, it also clogs the communication links
with numerous null messages, eventually choking the system. Another class of solutions,
called optimistic, suggests that processors operate as fast as they can without regard to
synchronization. Should one processor receive a message out of time-stamp order, it
initiates a process of "rolling-back" the .simulation to a point where all processors are
again in synch. Once in synch, processors again proceed independently. The drawback with
this approach is, of course, the complications which arise when the program tries to undo
a sequence of events and to restore the state at some earlier time. The approach
implemented in this simulation is between the optimistic and the pessimistic solutions.
Null messages are sent, but only on demand. If Processor A cannot proceed because it is
unsure of the current simulated time of Processor B, it sends a request to B. Processor B
will respond by sending a null message to A containing B's current time. With the new
information, A can then proceed.

4.2 Load Balancing Among Processors

A second problem is that of load balancing. The ideal in a multiprocessor system
is to balance the computational load evenly among all processors. This load, of course, is
dynamic and cannot be predicted accurately. Effort must be made, therefore, as the
simulation is running to monitor how much computation is -actudlly done by each processor.
When imbalance is detected, the simulation self-corrects, i.e., simulation workstations and
buffers are sent from one processor to another thereby reducing the computation load of
one processor and increasing the load of another.

5.0 CURRENT STATUS AND FUTURE PLANS

The simulation is, at present, approximately fifty percent complete. The project is
anticipated to be completed by May, 1990 at which time test versions will be installed
at two apparel plants, Tultex Corporation in Martinsville, Virginia and Jantzen
Corporation in Seneca, South Carolina. Testing and modification should take
approximately eight months, with a final version complete by December, 1990.

93

The industry currently has no simulation tool of this nature and thus has no means of
performing near-term scheduling through the use of simulated production.
Consequently, no expertise exists in the use of such a tool in near-term production
planning. Since any expert system presumes the existence of an expert to help define
the rules and methods for decision making, the second phase of this project will be to
observe the way in which planners use the tool effectively and then produce an expert
system which models their skills in the use of the simulation tool. The observations
gathered by this means will result in the creation of an expert system to advise less
skilled planners in making scheduling decisions. The final phase of the project may be
to remove the user from the system (there is yet to be good evidence to suggest this is

possible) and have the system create a plan with minimal human interaction during the
process.

94

Appendix B

SSSSSSSSSSS

VOLUME 3 NUMBER 1 1991

INTERNATIONAL JOURNALCOF

CLOTHING

SCIENCE
AND

TECHNOLOGY

1 { }
-

UM

|

) £
1A

‘lay AP 4
University Press///

ub}f

fa)

.ttt i 0 o

—r——— -

CONTENTS

VOLUME 3 NUMBER 1 1991

International Journal of Clothing Science and Technology

ABSTRACTS & KEYWORDS D:l

FRENCH & GERMAN ABSTRACTS
EDITORIAL : (4]

OBJECTIVE MEASUREMENT OF FABRIC
MECHANICAL PROPERTY AND QUALITY:

ITS APPLICATION TO TEXTILE AND CLOTHING
MANUFACTURING

S. Kawabata and Masako Niwa

SHOPFLOOR PERFORMANCE METRICS FOR
THE APPAREL INDUSTRY

John C. Peck, Roy P. Pargas,

Prashant K. Khambekar and

Satish K. Dharmaraj »

PERCEPTION OF TEXTURE, VISUALLY AND
TACTUALLY: AN EXPLORATORY STUDY USING
MULTIDIMENSIONAL SCALING ANALYSIS
Joan Laughlin

I |
CENTRE SECTION
OBJECTIVE MEASUREMENT TECHNOLOGY
BULLETIN FOR THE TEXTILE AND CLOTHING
INDUSTRIES
VIEWPOINT i
PROGRESS STATUS REPORT i

COMMUNICATIONS i

ANNOUNCEMENTS iv

IMee vv o o

submitted to International Journal of Clothing Science

and Technology

Shop-Floor Performance Metrics for the Apparel
Industry

John C. Peck Roy P. Pargas Prashant K. Khambekar
Satish K. Dharmaraj
Department of Computer Science, Clemson University
Clemson, S.C. 29634-1906

May 8, 1990

Abstract

In a typical apparel plant, there may be hundreds of machines, hundreds of em-
ployees and thousands of bundle sub-assemblies all simultaneously active. It is the
responsibility of the manager to optimize throughput and/or make efficient use of
employee and machine resources and/or keep work-in-process inventory levels low.
Ideally, to be able to deal with this complexity of scheduling, a manager would like
to be presented with a handful of numbers which indicate how his/her plant is op-
erating. The purpose of this paper is to identify and quantify a set of performance
metrics which provide a manager with information concerning plant performance.
This paper motivates and presents a mathematical analysis of many factors
which concern plant performance. The metrics enable a large amount of information
to be condensed to summary form so that performance of an operational plan can be
easily understood and lead to swift evaluation of that plan. The set contains about
70 metrics which the manager is free to interpret according to his/her operational
goals.
Keywords: Apparel Industry, Production Management, Shop-floor Control, Schedul-
ing, Performance Metrics, Simulation

Shop-Floor Performance Metrics for the Apparel
Industry*

John C. Peck Roy P. Pargas Prashant K. Khambekar
Satish K. Dharmaraj
Department of Computer Science, Clemson University

Clemson, S.C. 29634-1906
May 7, 1990

INTRODUCTION

In a typical apparel plant, there may be hundreds of machines, hundreds of employ-
ees and thousands of bundle sub-assemblies of differing styles all simultaneously
active. Work orders have costs and due dates associated with them and a shop-
floor manager must assign employees to operations and set bundle priorities, that
is, develop a day-to-day operational plan to complete the work orders. It is the
responsibility of the manager to optimize throughput while making efficient use of
employee and machine resources. Alternatively, he/she may strive to keep work-in-
process inventory levels low. However, because of the complexity of scheduling, the
manager is faced with a welter of confusing information, and, not too infrequently,
crisis situations. Ideally, a manager would like to be presented with a single number
or a handful of numbers which indicate how his/her plant is currently operating or
how the operation of his/hef plant would change as plans change. The purpose of

this paper is to identify and quantify a set of performance metrics whi;h proyic_lg a

*This work was supported in part by DOD Contract No. DLA900-87TI')-:091.7"’I‘551.: No. 0003

. 5.

manager with information concerning plant performance.

These metrics enable a large amount of data to be compacted and easily un-
derstood. They are styled after scheduling metrics as in French (1] and Rinnooy
Kan [2] and were produced after interviews with numerous plant managers at vari-
ous levels of responsibility concerning goals and a wide class of objective functions
for optimization. The set contains about 70 metrics which the manager is free to
interpret according to his/her operational goals. The complete set of metrics are
presented along with the motivation and rationale for incorporating each.

The paper is organized in the following manner. The definitions of commonly
used terms are followed by the types of metrics. Before all the metrics are motivated
and derived, some basic quantities which are not metrics in themselves but are used

to define metrics are given. A summary is given at the end.

GENERAL DEFINITIONS

The sewing room has four distinct types of entities: garment parts, styles, employees
and machines.

A cut is a lot or production order consisting of garment parts and has a due
date. Usually, many cuts of the same style are being pr.ocessed simultaneously in
the plant. Styles are defined by style flow graphs which indicate the operations,
the expected time for performing each of the operations and the sequence in which
operations must be performed on garments. A cut is composed of many bundles
of garment parts which can be in varying stages of completion. A bundle usually
consists of components for (typically) 12 to 100 garments and may be divided into
different sub-assemblies (such as a collar sub-assembly and a sleeve sub-assembly
for a shirt) being worked on simultaneously. (Unit Production Syétem clamps can

be considered as bundles of size 1.)

The employees of a plant are partitioned into departments. Usually work in one
department is independent of another.

A job refers to a unit of work and hence, in this document can mean a cut, a
bundle or a sub-assembly as indicated by a subscript. Each sewing operation has
an estimated standard time for its completion and is measured in Standard Allowed
Minutes (SAMS). SAMS for an operation are determined by industrial engineers
through time studies.

Employees are usually paid on an incentive scheme. They are said to be on-
standard while working normally on a sub-assembly. During abnormal periods,
such as machine failure, they are said to be off-standard. Employees differ in the
skills they possess and the efficiency of performing operations.

The words shop-floor and plant are used interchangeably in this document.

TYPES OF METRICS

A manager is interested in whether work will be finished in time for delivery, how
machines and employees are being utilized, whether any department in the plant is
lagging behind and how the plant is doing overall. Thus performance metrics can
be separated into four levels: Cut level, Style level, Departmental level and Plant
level. Unless otherwise specified, each metric is defined for all four levels.

The metrics enable the manager to see whether work was uniformly produced
* during the day or whether there were any slack periods or periods swamped with
work. The metrics can be calculated for any particular time period of interest (e.g.
from 8 a.m. to 11 a.m.). Such a time period is simply called the period.

A classification of the performance measures is given below.

1. Wamng time. Sub-assemblies often wa.xt in queues before they are. operated

upon. A manager is interested in knowmg whether a parhcula.r cut is bemg '

inordinately delayed or whether employees should be moved to places where

excessive work has accumnulated.

2. Cost. The expenditure incurred during job processing is identified by these
metrics. As manufacturing proceeds, direct labor adds value to each product.
When machines break down or employees wait idly for work or training is

conducted, excess cost is accrued.

3. Flow time. This term quantifies the time jobs take to be worked on. One can
compute the percentage of time that jobs waited, the average amount of value

added to the jobs while they are on the shop-floor, etc.

4. Lateness. This gives the actual and estimated completion date of cuts and the
amount by which they are early or late. Late jobs can incur penalties whereas

jobs which are early may add to inventory costs.

5. Machine Utilization. The time wasted due to machine malfunction or machine

idleness gives a measure of the machine utilization.

6. Labor Utilization. The time spent by employees being productive or non-
productive off-standard gives a measure of the utilization of labor. This time

measure is similar to excess cost which is a dollar measure.

7. Production. This measures work accomplished in terms of the SAMS pro-

duced.

8. Efficiency. This gives a comparative figure for actual output versus expected

maximum output.

All metrics are motivated and described here and the manager must decide which
metrics to give more importance depending on his/her priorities. How to interpret:

the metrics is up to the manager.

Before the metrics are given, symbols used in the document are presented.

SYMBOLS

Since the number of symbols is high this section tabulates the symbols used in the

document. First, the basic entities or subscripts:

(symbol) (units) (description)

b - index into bundles of a cut
c - index into cuts of a style
d - - index into departments of a plant
e - index into employees
final - the last operation of a job
- for incomplete jobs, it is carried out in a future period
fip - first job of the period for a machine
fop - first operation of the period for a job
i - index into idle times of an employee
J - index into jobs in the order seen by a machine
lip - last job of the period for a machine
lop - last operation of the period for a job
m - index into machines
o - index into operations
s - index into sub-assemblies of a bundle
z - index into styles in a plant

Now some auxiliary symbols:

(symbol) (units) (description)

dur min duration of period in minutes

n - the number of jobs

tdy date today’s date

w - weight (either priority weight or value weight)

Now the metric related symbols:

(symbol) (units) (description)

BD date begin date of jobs

CD date completion date of completed jobs

CLI min clock-in time of an operation w.r.t. machine

CLO min clock-out time of an operation w.r.t. machine

DD date due date of jobs L

‘DMS $-min dollar-min sewn for a job from its start

DMW $-min dollar-min waiting for a job from its start -

DV 3 dollar value at the end of the period

DvVOo % dollar value at the end of each operation
DVP % dollar value for the period

E days earliness of jobs

EC S excess cost of whole plant

ECD date estimated completion date of incomplete cuts

EFF SAMS/min efficiency of an employee
EFM SAMS/min maximum efficiency of an employee

EL days estimated lateness of incomplete jobs

FP 3 formula pay

FTP min flow time for the period

IT min idle time of machines

L days lateness of jobs

MFT min mean flow time of jobs

ML days mean lateness of jobs

MPP SAMS maximum possible production

MWT min mean waiting time of jobs

NOP min non-productive off-standard time of employees for the period
NR $/SAMS on-standard rate (dollar per SAM) of operation
NWC - normalized waiting cost

NWT - normalized waiting time

OBR $/SAMS operation base rate (for each operation of a job)
OR 8/min off-standard rate of employee

orT min off-standard time of employees

POP min productive off-standard time of employees for the period
PP 3 production pay

PPI - plant productivity index

pPsC - percent SAMS completed

RWTFT- ratio of waiting time to flow time

RSTFT - ratio of sewing time to flow time

RSVFT - ratio of SAMS value to flow time

RSVST - ratio of SAMS value to sewing time

SC S standard cost of jobs

SMS SAMS-min SAMS-min sewn
SMW SAMS-min SAMS-min waiting

ST min sewing time of jobs
if subscripted then for that operation
STP min sewing time of jobs during the period

SV SAMS SAMS value from start of job till end of the period
SVH SAMS SAMS value produced per hour

SVO SAMS SAMS value from start of job till end of an operation
SVP SAMS SAMS value from start of the period till end of period
T days tardiness of jobs ' ,

TDM $min total dollar-min for a job from its start

TSM SAMS-min total SAMS-min
TSV SAMS total SAMS at the end of the job

WFT min weighted sum of flow times
WIT min weighted sum of idle times
WL days weighted sum of latenesses
wT min waiting time of jobs before an operation
if subscripted then for that operation
WTP min waiting time of jobs during the period
WWT min weighted sum of waiting times

Symbols may be subscripted with , ¢, d, ¢, i, j, m, 0, s or z as defined above. A
symbol with a subscript represents the quantity for that particular entity e.g. SV;
indicates the SAMS Value of cut ¢ whereas SV; indicates SAMS Value of bundle
b (of some cut). A Symbol without any subscript represents the quantity for the

whole plant.

Note: The value of any quantity with a subscript of 0 is 0.

CALCULATIONS OF SAMS VALUE

Some quantities are basic and referenc;d repeatedly and are thus discussed before
the discussion on metrics. SAMS Value calculations are given in this section whereas
Dollar Value calculations are given in the following section.

Each operation has attached to it a SAMS value which is a measure of work

(time) expected from a standard employee (i.e. one with 100% efficiency).
SAMS Value at the end of an operation (SVO)

The measure of accumulated work from the start of a job till the end of a particular
operation o is

SVO‘,o = SVO"°—1+SAMS° (1)

where SAMS, is the SAMS for operation o and is a known gt.lax;tif:}‘r'._

SAMS Value (SV)

SV measures the accumulated work from the start of a job till the last operation of

the period (which is represented by lop). SAMS value for sub-assembly s, SV;, is

obtained by summing over all the operations in that sub-assembly.

lop
SV, =Y _ SAMS,

o=1

SV, is obtained by summing over all the sub-assemblies in that bundle.
SV=>Y SV,
SV, is obtained by summing over all the b’undles in that cut.
SVe=Y SV
SV, is obtained by summing over all the c:’.xts in that style.
SV.=) SV
c
SV (for the plant) is obtained by summing over all the styles in the plant.
SV = Z SV:
z

Note: Since other metrics are similarly sums of their components, they
will not be repeatedly derived. A summary list of metrics appears at the

end.

SAMS Value Produced in the Period (SVP)

)

3)

(4)

SVP is the quantity produced only during the period of interest. This indicates

how much work was accomplished and can be used to compare with a target or to

calculate efficiency.

lop
SVP, =) SAMS,
o=fop - o
SVR =) SVP,
. R .

©

B

Total SAMS Value (TSV)

TSV is the total work put into a job when it is completed. Since all the operations
are known even before work starts on the job, this is a known quantity. This

quantity is a goal to be achieved.

Jinal

TSV, =) SAMS, (9
o=1

TSVy = TSV, (10)

CALCULATIONS OF DOLLAR VALUE

As opposed to the SAMS value, which measures time invested (or to be invested)

in a job, Dollar Value measures the investment or cost.
Dollar Value at the end of an operation (DVO) -

The measure of accumulated worth from the start of a job till the end of a particular
operation o is

DVO, o= DVO, o1 +SAMS, + NR, (11)
Dollar Value (DV)

DV measures the accumulated worth from the start of a job till the last operation

of the period.

lop
DV, = (SAMS,* NR,) (12)

o=1

DV, =) DV, . (13)

Dollar Value Produced in the Period (DVP)

DVP is the dollar worth produced only during the period of interest.

lop
DVP, = Y (SAMS,* NR.) (14)
o=fop ‘
DVP =) DVP, (15)
3

WAITING TIME

The Waiting Time is the time jobs must wait in the buffers before being processed.
A large value indicates bottleneck problems in the plant i.e. a pile up of work in
certain areas on the floor suggesting that some employees may be moved there to

alleviate the load.
Waiting Time for the period (WTP)

WTP is the total waiting time during the period of interest.

lop
WTP, = Y WT, (16)
o=fop
WTP, =Y WTP, (17)
3

Normalized Waiting Time (NWT)

Some jobs are almost complete whereas some jobs have just begun. The jobs which
are almost complete will generally have more money invested in them so a manager
may want to weight the waiting time in proportion to the invested standard minutes.
SAMS-min Waiting, SMW, is defined first and is the waiting times for operations
weighted with the SAMS investment in the job prior to those operations.

lop - .
o=fop

10

L SMW,= 3 (SVO.exWE) - (8 o

SMWy =3 SMW, (19)

Next SAMS-min Sewn, SMS, is defined as the sewing times for operations

weighted with the SAMS investment in the job prior to those operations.

lop
SMS,=) (§VO,,0-1+5T) (20)
o=fop
SMS, = SMS, (21)

So Total SAMS-min, TSM, is the total flow time of the operations weighted with

the SAMS investment in the job prior to those operations.
TSM.=SMW,+ SMS, (22)
A normalized waiting factor weighted according to SAMS value is thus obtained.

NWTc = SMW./TSM, (23)
COST

Costs are of importance to everyone. Standard cost, excess cost and the total value

of work-in-process inventory are the different types of costs.

Standard Cost (SC)

Standard Cost, SC, is the amount of money paid out during the period to employees
for working on jobs (as against for being off-standard). SC is identically equivalent
to DVP, the expression of which is derived in the preliminary calculations of Dollar

Value.

Excess Cost (EC)

- dueto meetmgs to attend, etc. whlch causes employees tobe pla.ced in oﬁ'—standard

1

o Excw COSt EC, 15 the cost due to ma,chme breakdowns, employea unavallable""'{j' BRI T

statuses. This is applicable at the plant level only.

PP, =) SAMS,*OBR, (24)

FP, =Y (%clocktime x hrs s OR + %SAMS * SAMS, + OBR,) (25)

EC =Y (max(PP,,FP.)— PP.) (26)

In-process Inventory Cost

In-process Inventory Cost indicates the amount of worth that is tied up in incom-
plete jobs. It is identically equal to DV, the expression of which is derived in the

preliminary calculations of Dollar Value.

Normalized Waiting Cost (NWC)

Similar to weighting the waiting time according to the standard minutes invested
in a job, a manager may wish to weight the waiting time according to the amount
of money invested in the jobs. The jobs which are almost complete will generally
have more money invested and will get weighted more.

Dollar-min Waiting, DMW, is defined first and is the waiting times for operations

weighted with the dollar investment in a job prior to those operations.

lop
DMW, =) (DVOy,o-1+WT) - (27)
o=fop
DMW, =) DMW, (28)
$

Dollar-min Sewn, DMS, is defined next as the sewing times for operations

weighted with the dollar investment in the job prior to those operations.

lop : C e PCRARRA
DMS, = Y (DVO,,0-1*5T,)

9
o=fop CeE

12

where, ST,, the sewing time for the operation is,
ST, = SAMS,/EFF,. (30)
Now,
DMSy = DMS, (31)
3
So Total Dollar-min, TDM, is the total flow time of the operations weightéd
with the dollar investment in the job prior to those operations.

TDM,=DMW.+ DMS, (32)

A normalized waiting factor is thus obtained (but one which is weighted accord-

ing to dollar value).

NWC¢ = DMW,/TDM, (33)

FLOW TIME

Flow Time of a job is the total amount of real time spent in the plant. Since jobs

are either being operated upon or waiting, the Flow Time is the sum of these two

times.

Flow Time for the period (FTP)

FTP, the flow time for the period, is the sum of sewing time for the period and the

waiting time for the period.
FTP, =STP, + WTP, (34)

where,
lop

. ST_PI-——' Z._Sj'o
e | c=fop

. am e

Now,

FTP,=) FTP, (36)

Note that for an incomplete sub-assemblies which begins at the start of the
period, FTP is identically equal to dur, the duration of the period. FTP will
be smaller than dur for sub-assemblies which get completed during the period or
incomplete sub-assemblies which start at some time during the period.

There are, additionally, four simple ratios of interest:
RWTFT, = WTP./FTP. (37)
RWTFT ranges from 0 to 1 as the waiting time is a part of the flow time.
RSTFT, = STPC/FTPF (38)
Again, RSTFT ranges from 0 to 1 as the sewing time is a part of the flow time.
RSVFT,=SVP./[FTP, (39)

RSVFT ranges from 0 to oo as employees can have greater than 100% efficiency,

theoretically infinite efficiency producing infinite SAMS.
RSVST, =SVP,/STP. (40)

Again, RSVST ranges from 0 to co.

LATENESS

The manager wants to quantify lateness, as excessive lateness may have penalties.
This measures how good the plant is at being able to finish cuts by their due dates.

" For cuts already completed, one has a concrete Completion Daf:e; for incompleteo -

- cuts, the Completion Date must be estimated. e e e

14

Completion Date (CD)

For cuts which are completed during the period,
€D, = tdy (41)
Estimated Completion Date (ECD)

For cuts which are still incomplete at the end of the period, the completion date is
an educated guess. Assuming th{it the rate of work on the cut will be the same, a
simple proportion of work completed to total work to be done gives the Completion
Date.

ECD¢ = BD.+ TSV, *(tdy — BD.)/SV. (42)
Lateness (L)
For cuts which are completed during the period,
Lc=CD.—- DD, (43)

Lz = Z L. (44)

Estimated Lateness (EL)

- For cuts which are still incomplete at the end of the period, the corresponding rough

measure is,

ELc = ECD,. - DD, (45)

ELz =) EL. (46)
[

Earliness and Tardiness (E and T)

' Lateness can be elthet posmve or negatlve La.tenas w}nch is purely negatwe xs_

" termed Ea.rhness ‘whereas TLateness which is purely posmve is termed Tardm&s *

5 e i

e T end v rretas aie P S At et oo e arm

Hence,

_J Le ifL:<0
Be = { 0 otherwise (47)
Ez =) E. (48)
[4
_J L ifL:>0
Te= { 0 otherwise (49)
Ty =) T (50)
(4

MACHINE UTILIZATION
Idle Time (IT)
A machine is idle between the end of an operation and the beginning of a new one.

A machine is also idle in the event of a breakdown. Idle Time conversely gives a

measure of utilization. (CLOyjp-1 = CLOg = start time of the period.)

ljp
ITn= Y (CLIj - CLO;-y) (51)
j=tip
IT =Y IT, (52)

LABOR UTILIZATION

Employees can be on productive off-standard or non-productive off-standard. These

time measures conversely give the labor utilization.

Productive Off-std Time for the period (POP)
POP is the time due to machines working imperfectly, employees working on sam-

"

. ples, employees being trained, etc., which causes employees to go off-standard. This

16

is applicable for the department and plant level only. (Here OT is productive part

of off-standard time.)
POPd = Z z OT;,:' (53)
e i

POP =) _ POP; (54)
d

Non-productive Off-std Time for the period (NOP)

NOP is the time due to machine breakdown, employee unavailable due to meet-
ings, etc., which causes employees to go off-standard. This is applicable for the
department and plant level only. (Here OT is non-productive part of off-standard

time.)
NOPg =Y » OT.; (35)

NOP = Z NOPy (56)
d

PRODUCTION

Production is a pure SAMS measure as opposed to Standard Cost which is a dollar

measure.

SAMS Value Produced in the Period (SVP)

The amount of production is the SAMS value produced in the period, SVP, the

expression of which is derived in the preliminary calculations of SAMS Value.

SAMS Value Produced per Hour (SVH)

SVHc = SV P./(dur/60) |)

17

Percent of SAMS Completed (PSC)

PSC measures the amount of work done till the end of the period and may be

compared with a target for production.
PSCe =SV, «100/TSV, (58)

EFFICIENCY
Plant Productivity Index (PPI)

PPI is a rough measure which indicates how well the employees are performing as-
signed operations as compared to the best historical performance on any operation.
An employee has a maximum efficiency in a particular operation and the Maximum
Possible Production, MPP, is achieved if all employees are assigned to the operation

they do best. As the name indicates this is applicable only at the plant level.

EFM, ::maxEFFc,o (59)
MPP =dur*y EFM, (60)

PPI=SVP/MPP (61)
MEANS

Since the number of jobs a plant processes varies from time to time, the following

averages are of interest.

MWT = WTP/n (62)
MFT = FTP/n (63)

ML=@E+ED/m)

18

WEIGHTED SUMS

Some jobs may have higher priorities or more value than other jobs. In general,
there may be a weight attached to each quantity. Hence, weighted quantities are of

interest. These weights can vary from 0 to 1.

WWT =) WTP.*w, (65)
WEFT =) WFT. x u, (66)
WL=) L+, (67)

.
WIT =Y T *wm (68)

SUMMARY

The question of how a plant manager determines if his/her plant is performing well
still cannot be answered in general; however, this paper has motivated and pre-
sented a mathematical analysis of many factors which concern plant performance.
A summary list of metrics is given in Table I below.

As can be seen the performance metrics enable a large amount of information to
be condensed to summary form. Performance of an operational plan can be easily
understood and lead to swift evaluation of that plan. |

One of the research projects being conducted at Clemson University is the de-
velopment of a near-term simulation of apparel plant shop-floor operation to aid a
plant manager in creating and evaluating plans [3]. Given an operational plan and
the current state of the shop-floor the activities during the course of a day are sim-

ulated ina few mmutw The performa.nce metncs pr&ented in thls document are -

19

M [Cut Level | Style Level | Dept. Level | Plant Level |
Waiting Time | WTP¢ WTP, WTP4 WTP
NWT, NWT, NWT
Cost DVP¢ DVP, DVPy DVP
EC
DV DV, DV, DV
NWC¢ NWC, NwWC
Flow Time FTP. FTPg FTPy ¥TP
RWTFT: | RWTFT; | RWTFTy | RWTFT
RSTFT. | RSTFT; | RSTFT4 | RSTFT
RSVFT: | RSVET,; | RSVFTy | RSVFT
RSVST.: | RSVSTz | RSVSTy | RSVST
Lateness Lc¢ Lz L
ELc ELy EL
Ec Eg E
Te Ty T
Machine Utiliz 1T
Labor Utiliz POPy POP
. NOP,4 NOP
Production SVe SV SV
SVP¢ SVP, SVPy SVP
SVH¢ SVH, SVHy SVH
PSC¢ PSCy PSC
Efficiency : PPl PPI
Means MWT
MFT
ML
Weighted Sums WWT
WFT
WL
WIT

Table I. Summary List of Metrics.

REFERENCES

1. French, S., Sequencing and Sheduling: An Introduction to the Mathematics of
the Job-Shop, Ellis Norwood, London, 1982.

2. Rinnooy Kan, A. H. G., Machine Scheduling Problems: Classification, Com-
plezity and Computations, Martinus Nijhoff, The Hague, 1976.

3. Pargas, R. P., Peck, J. C., Khambekar, P. K., Dharmaraj, S. K., “Near-term
Distributed Simulation of Apparel Manufacturing”, submitted to the Western

Simulation Multiconference.

Appendix C

1990
WINTER SIMULATION CONFERENGCE
PROCEEDINGS

Edited by:

OSMAN BALCI
Virginia Polytechnic Institute and State University

RANDALL P. SADOWSKI
Systems Modeling Corporation

RICHARD E. NANCE
Virginia Polytechnic Institute and State University

9 — 12 December 1990
The Fairmont Hotel
New Orleans, Louisiana

Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

NEAR-TERM DISTRIBUTED SIMULATION
OF APPAREL MANUFACTURING

Roy P. Pargas
John C. Peck
Prashant K. Khambekar
Satish K. Dharmaraj

Department of Computer Science
Clemson University
Clemson, South Carolina 29634-1906

ABSTRACT

This paper describes the design and implementation of a
near-term simulator for apparel manufacturing. The primary
purpose of the simulator is to provide management with a tool
for production planning. In order to run as accurate a simulation
as possible, data describing the status of the apparel plant is con-
tinually collected by a real-time shop-floor control system. This
data is then used as input to the simulator. In order to increase
the speed of the simulator and reduce response time, the sim-
ulator is implemented on a multiprocessor system consisting of
seventeen T-800 INMOS Transputers with a COMPAQ Deskpro
386/25 serving as front-end processor. A user enters a plan for
the next production period and receives back more than seventy
different measures of performance of shop-floor operations. The
user may iterate this process, making modifications to the plan,
until the simulated shop-floor performance is satisfactory. The
final result is a detailed plan for the next production period.

1. INTRODUCTION

Apparel plants with scheduling problems operate on a larger
scale than manufacturing plants in many other industries. A
typical apparel plant of this type may have more than 400 direct
labor (incentive) employees with perhaps 500 machines isome
large plants have 1500+ employees and a correspondingly larger
number of machines). Both employees and machines are capable
of performing multiple operations, but only a small percentage
of the total operations are required to manufacture a particular
garment. Active on the shop-floor at any one time might be 100
or more production lots (orders) each consisting of perhaps 200
bundles of garment parts, each bundle consisting of five or more
subassemblies, each subassembly requiring one to twenty opera-
tions. Production lots are possibly of different styles, meaning
the operations and sequencing of operations are different. Bundle
subassemblies flow through the manufacturing process in paral-
le! and join (merge%, as operations are completed, to produce
finished garments. The correct matching of subassemblies from
parent bundles is important since color shading variations will be
noticeable otherwise. Since employees and machines have multi-
ple, but limited, skills and capabilities, load balancing of these
resources against required work is a major problem.

The ultimate goal in production scheduling is to improve
the operation of a plant. The primary question is “How does
one know if a change in an operational plan produces a better
or worse schedule?” The performance goals of management, at
different plants at different times, may produce very different
answers to the question. At one point in time, the goal may
to be maximize the output of size 16/34 red button-down collar
shirts, whereas at another time, it may be to minimize the work-
in-process inventory level subject to keeping the average efficiency
of employees above 95%. With different goals, different objective
functions, and different management styles, the question then
is: how does one build a single management tool to facilitate
production scheduling?

This paper describes one attempt at building such a tool: a
near-term simulator of shop-floor operations of an apparel man-
ufacturing plant. We set four objectives for the simulator:

614

(1) It should accurately predict near-term performance (“near-
term” is loosely defined as one hour to five days).

(2) It should be possible to use the simulator interactively and
iteratively. The user should be able to change values of
the simulation and observe the effects quickly.” Very short
response time is therefore necessary.

(3) The simulator should have wide applicability, i.e., it should
be usable in different plants with different performance
goals.

(4) The simulator should be easy to use, and the results easy
to read and comprehend.

The simulator, which is conservative and event-driven [Bryant
1977: Chandy and Misra 1979: Peacock et al. 1979} is described
in detail in the rest of this paper. Section 2 shows how one
may use a simulator as a tool for production planning. Section
3 describes the user interface. both input and output, Section
4 describes a set of performance metrics available to the user.
Section 5 gives an overview of the design and implementation of
the simulation. Section 6 discusses conclusions and future plans.

2. SIMULATION AS A PLANNING TOOL

Most simulations are beset with one major problem: the
difficulty of obtaining actual data on which the simulation can
operate. As a result, simulation designers attempt to estimate
crucial information such as the rate of arrival of goods to be
processed, processing rates of different machines, and skill levels
(eﬂiciencia? of employees. The results predicted by the simula-
tion will, of course, be close to reality only if the estimates are

accurate. However, coming up with good estimates can often be
both difficult and frustrating.

An alternative approach is to measure, in advance, the pro-
cesses normally estimated by many simulations. For example,
in an apparel manufacturing plant, one may measure the skill
level of each operator on each different machine type. Or one
need not estimate the rate of arrival of goods into the plant if
one knows exactly what orders are arriving and at what time.
In apparel manufacturing, as in many industries, skill levels vary
widely from employee to employee. Assuming that all employ-
ees perform at some average rate or according to some statistical
distribution may seriously handicap the ability of a simulator to
make accurate predictions. One can also take note that, for ex-
ample, on a given day, a one-hour company-wide meeting will be
called to discuss employee benefits; the effect, of course, is that
production stops completely for that one hour. If it is known
that a high-priority order of goods is to be started in the morn-
ing, one may mark the lot associated with the order accordingly,
causing the lot to be sewn ahead of others already on the shop-
floor. In short, every piece of information that can be measured
is measured. Estimates of missing data are made only if there is
no way to measure the information directly.

This on-going measurement requires that a real-time shop-
floor control system be in place. Such a real-time system can
collect data through a network of intelligent devices, one at each
workstation on the shop-floor. These devices measure and record

R.P. Pargas, J.C. Peck, P.K. Khambekar, and S.K. Dharmaraj

a variety of facts, a few of which are:

(1) which bundles have arrived at which operation (this pro-
vides accurate tracking of every bundle currently in pro-
cess),

(2) the number of minutes it takes for Employee A on Worksta-
tion 1 performing operation P on Bundle X (this provides
one data point which will contribute to a measure of the
skill level of this particular employee at this operation, as
Ke“ 33 keeps track of the amount of work this employee has

one),

(3) the number of bundles on the floor (providing a global view
of the number and distribution, across the shop-floor, of
bundles of parts),

(4) the number of minutes a particular workstation has been
idle {giving up-to-the-minute information on utilization of
equipment).

The data are transmitted from the workstations, through the
network, and are collected on a PC for viewing or for processing
(for}sxample, to produce a payroll at the end of each day or
week).

The real-time system employed in this study is one devel-
oped and marketed by Foxfire Technologies Corporation [Foxfire
Technologies Corporation 1989]. This system, currently installed
in a number of apparel manufacturing plants across the coun-
try, essentially provides detailed information on every employee,
every lot, and every workstation on the shop-floor.

3. THE USER INTERFACE

The simulator, a block diagram of which is shown in Figure
1, operates as follows. The user defines a plan for operation of
the plant in the near-term, i.e., for the next one or several days.
The starting point for the plan is the current state of the plant
as represented by data provided by the real-time system. The
user then specifies changes to the plan which he or she wishes to
implement at given times. New work may arrive at midmorning,
personnel may be reassigned to different operations at specified
times, machines may be taken out of service for preventive main-
tenance, new machines which operate at greater speeds may be
placed into (simulated) service, etc. With this new plan for op-
eration (usually a small variation of the real plan currently in
effect) the simulation begins execution. The operator can re-
quest that the plant be simulated until a specified point in time,
for a specified duration or until an interrupt key is pressed.

Figure 2 shows the instructions available to the user when
developing an input plan. The parameters associated with each
are not shown, in order to reduce clutter. The selected instruc-
tions are entered by the user and saved in a file which serves as
input to the simulator. The instructions have been grouped by

Metric
————— Daa >
Simulator | Graphics
grrsss s X Front-end
4.___.___ Input
Plan

function. In the first group, Initialization, there are instructions
to start and end the simulation at specified (simulated) times.
Instruction 3 names the files produced by the real-time system.
These files provide information on the current status of the plant,
Instructions 4 and § inform the simulator of changes in person-
nel. For instruction §, it is necessary to specify which workstation
the now-present employee will be assigned to; this is because the
simulator must look up this employee’s efficiency on the specified
workstation in the database provided by the real-time system.

The next group of instructions inform the simulator of events
that will occur during the day. For example, (6) a new lot will ar-
rive at a certain time, (7) a meeting is scgeduled later in the day,
or (8) a regular plant-wide break will take place. Instructions
9 and 10 schedule events relating to specific employees; an em-
ployee is paid at a different rate as a result of employee training,
or an employee is moved from one workstation to another because
of anticipated bottlenecks in the workflow. Instructions 11 and
12 allow changes made to a workstation. Instruction 13 modifies
tllle lot priority, allowing it to move faster or slower through the
plant.

Instructions 14 through 17 provide the user with control over
the simulator itself: pausing, restarting, and stopping. Instruc-
tions 18 through 28 give a variety of information on employees,
workstations, and pay code tables. Buffers refer to the queues
of bundles of parts waiting to be sewn. Finally, instructions 29
through 31 are warning signals for which the user may request.
The user may want to be jerted when the simulator signals that
an employee has no more work, that an entire buffer (which typi-
cally provides bundles of parts to several workstations) is empty,
or that an empty buffer has just received a new set of bundles.

During the simulation, a set of approximately seventy-five
performance metrics (Section 4) are maintained. These metrics
measure different aspects of plant operations displayed as column
graphs. The user may select up to four of these for graphical dis-
play on the computer monitor (Figure 3). The user has available
the typical grapﬁics window capabilities: opening and closing of
windows, bringing windows to the front, line scrolling up and
down, page scrolling, moving windows around the screen, and
resizing. One window is used for input and enables the user to
enter a plan, whereas the rest are output windows showing a va-
riety of information (see items 18 through 28 of Figure 2). User
input menus prompt the user for specific information whenever
needed. Finally, a help window gives information on all other
windows. All window graphics routines are implemented with
Borland’s Turbo-C graphics library calls.

As the simulation progresses, the display graphics are dy-
namically updated. If the simulation operator is dissatisfied with
the values of certain metrics, he or she may choose to restart the
simulation after making changes to the current plan. In this inter-
active and iterative manner, a plan which best suits management
can be developed. This plan can then be printed and used as a
recommendation to shop-floor supervisory personnel. We believe
that in the beginning a user will experiment with different sets

Figure 1. Block Diagram of Simulator

615

Near-Term Distributed Simulation of Apparel Manufacturing

INITIALIZATION

1. Start time

2. End time

3. Input data files (RTS files)

4. Employec present during last period
(yesterday) but absent now

5. Employee absent during last period
(yesterday) but present now

SHOP-FLOOR MANAGEMENT
6. New lot arrival
7. Schedule meeting
8. Set time of break
9. Change pay code
10. Move employee to another workstation
11. Add an operation to a workstation
12. Delete an operation of a workstation
13. Change priority of a particular lot

SIMULATOR CONTROL
14, Stop immediately
15. Resume simulation
16. Stop at a given time
17. Restart

LISTS

18. Show list of off-standard emplyees

19. Show list of on-standard emplyces

20. Show list of idle employees

21. Show list and status of all employees

22, Show list of skills and efficiencies of an
employee

23. Show list of workstations attached to &
buffer

24, Show list of empty buffers

25. Show list of idle workstations

26. Show list of assigned workstations

27. Show list of machines and operations of
a workstation

28. Show Pay Code Table

INTERRUPTS
29. Inform user that an employee is idle
30. Inform user that a buffer is empty
31. Inform user that work has arrived at a
previously empty buffer

Figure 2. Commands Available to the User

current graphid |
100 - 500
°7 13 07 13
50 100
1L N
7 B %9 13
input line €nTor message

Figure 3. The Normal Graphics User Interface

of metrics, but that over time, he or she will settle on one set
which will be used thereafter.

A useful time to use the simulator is at the end of a shift, or
just before a shift starts. During this period, the user has time
to work with the simulator and plan the operations for the next
shift. However, because a snapshot of the current status of the
shop-floor is available at any time (a benefit of using a real-time
shop-floor control system), it is possible for a user to run the
simulation at virtually any time of the day using as the current
snapshot of the plant that information most recently provided
by the real-time system. The simulation gives the user a tool for
quickly predicting the performance of the shop-floor during the
remainder of the current production period.

In summary, this simulator provides the user with a tool for
developing a production scheduling plan interactively. The man-
ner one uses this tool is very similar to the manner one uses a
spreadsheet program. With a spreadsheet, the user can change
a single cell, and every other cell whose value depends upon it
changes automatically. The user can immediately see the “bot-
tom line” result of a single change. Similarly, the user of this sim-
ulation can change one part of the current production plan (say.
replace one employee with another on Workstation 1 at 10:00
a.m.) and be able to see, very quickly, the effect of the change on
overall production for some future period of time. The feedback
the user receives is the performance metric information selected
for viewing. If he or she is satisfied with the new results, the user

616

R.P. Pargas, J.C. Peck, P.K. Khambekar, and S$.K. Dharmaraj

may opt to kecp the employee change in the plan. Otherwise,
the user may delete the change and may continue trying other
modifications.

4. PERFORMANCE METRICS

One design decision was to provide a wide variety of perfor-
mance metrics for the user to select and view. The reason for
this is the belief that different managers will want to optimize
different metrics. Some may want to maximize workstation uti-
lization. Others may try to minimize amount of work-in-process
inventory. Still others prefer minimizing employee idle time. As
a result, the best approach is to provide all of the metrics and let
the user select those which he or she wishes to observe and im-

rove. We expect that after some experience with the simulation
ﬁas been gained, the user will settle on a subset of the metrics
thereafter. As an aside, note that some metrics conflict and thus
cannot be optimized simultaneously. For example, in order to
keep employees working on production, it may be necessary to
increase the amount of work-in-process.

The metrics used in this study were derived largely from con-
cepts developed for job-shop scheduling, as described by French
‘1982] and Rinnooy Kan [1976]. Metrics are provided at four dif-

erent levels: lot (a single production order?, style, department,
and plant. Seven classes of metrics are available to the user:

(1) Waiting time. Bundles of parts generally wait in queues be-

fore they are sewn. A manager may be interested in know-
ing whether a particular lot (composed of several bundles)
is ieing inordinately delayed or whether employees should
be moved to operations where excessive work has accumu-

lated.

(2) Cost/Value. As a lot moves through the plant, it accu-
mulates value. Each sewing operation adds labor value.
Machine breakdown, lack of work, employee training, and
the like, add excess cost to plant operation but add no value
to the product.

(3) Flow time. This measures the amount of time a lot is on

the shop-floor. One may compute the percentage of the
time jobs are waiting in queues, or the average amount of
dollar-value per minute each lot accrues while on the shop-
floor.

(4) Lateness. Being able to estimate by how many days a lot
will be late (or early) allows a user to plan ahead. For
example, he may decide to give a higher priority to a lot
to allow it to move along through the plant. On the other
hand, a lot that will be completed too early may require
unwanted inventory handling. The user may decide to hold
processing on an early lot for a day or two.

(5) Labor utilization. Significant labor underutilization indi-
cates several possible problems: workload imbalance, sug-
gesting that the idle employees be trained to perform other
operations; too little work-in- process, suggesting that more
new orders be started; or simply too many employees for
the current work available, suggesting that fewer employees
be scheduled for the next several days.

(6) Production. This provides the user with a variety of mea-

sures for the amount of work produced and the rate at
which it is produced. -

(7) Efficiency. This provides a comparison of the actual output
produced by the plant and the maximum possible output
of the plant.

For a detailed description of the complete set of metrics used, the
interested reader is referred to a paper by Peck et al. {1990].

5. DISTRIBUTED SIMULATION

A major concern in this simulation is simulation response
time. A simulation of a large apparel manufacturing plant with
500 or more workstations is anticipated to require much more

computing power than is available on a PC, even on the latest
models such as the IBM PS/2 family, some of which use the very
fast Intel 80386/387 processors. For this reason, we decided to
implement the simulation on a distributed memory multiproces-
sor system.

The multiprocessor system used was built by Computer Sys-
tem Architects of Provo, Utah. It consists of seventeen INMOS
T-800 Transputers, each with two megabytes of memory. The
processor integrates a 32-bit processor, a 64-bit floating point
unit, and 4 Kbytes of static RAM. At peak speeds, each processor
provides 10 MIPS and 1.5 Mflops. Each has four communication

orts which can be used to interconnect with other processors.
gixteen processors, therefore, can be linked to form a linear ar-
ray, a ring, a mesh, a 2-D torus, or a 4-D hypercube. One of
the Transputers is called the root processor and serves as a liai-
son between the front-end PC and the sixteen other Transputers,
called nodes. The front-end processor, which accepts input from
and provides graphics output to the user, is a standard PC, a
COMPAQ Deskpro 386/25, with a 110 Mbyte hard disk.

A major design decision was to break up the major functions
of the simulation among the processors available. The primary
functions are input and output, execution of the simulation it-
self, sending of user input to the simulation, and collection and
processing of performance metric data (Figure 1). A natural as-
signment of function to processor is to assign all input/output
function to the front-end PC, the simulation to the Transputer
nodes, and to let the root Transputer serve as a liaison, collecting
metric data and broadcasting user input to the nodes.

The responsibilities of the front-end computer are to provide
the interface allowing the user to enter and modify plans, and
to display all metric information in graphical format. All shop-
floor status information is stored in a database which resides on
the PC hard disk. The root Transputer collects and processes
performance metric data before sending the data to the front-
end for display. As each node steps through the simulation, it

accumulates performance metric information and, at predefined
time intervals, sends the data to the root Transputer. The root
collects the data, performs a few simple computations (such as
computation of means and variances), and when the data for the
time interval is complete, sends a packet of metric information
to the front-end PC for graphic display.

This division by function is quite clean. The user sees only
the front-end computer and does not know about the existence
of the root or node Transputers. The program executing on the
front-end is unaware of the number of processors running the
simulation. It is only aware of simulator commands and data it
sends down the communication link to the root Transputer, and
metric and other information received from the root. In the same
way, the root program is independent of the number of Trans-
puter nodes and the nodes depend on the root only for startup
information. The simulation may run on one node Transputer,
or as many as the user can afford. For smaller problems, one
Transputer may suffice. For larger problems with 500 or more
workstations, the user may decige whether the increased speed
of execution justifies the cost of additional processors. The de-
sign is flexible enough, however, to accommodate any number of
node Transputers.

The Transputer nodes execute an event-driven simulation.
Because physical memory is limited on each node Transputer
(two megabytes per processor) and virtual memory is not pro-
vided by the node operating system, we have opted for a con-
servative simulation, rather than the optimistic Time Warp ap-
proach proposed by Jefferson [1985). The most common event is
completion of a sewing operation on a subassembly. Other events
include lot events (arrival of a lot, change in a lot’s priority), em-
ployee events (employee is assigned to another workstation, em-

loyee stops work to attend a meeting), and workstation events
53 workstation is reconfigured for a different sewing operation).

Each sewing operation has a unique buffer which holds a
queue of subassemblies waiting to be sewn. One or more work-
stations, configured to perform the operation, pick subassemblies
from the buffer in a first-come, first-served order. A processor,
one of the node Transputers, simulates the activity of one or
more buffers. For correct first-come, first-served simulation, the
workstations must coordinate. This is most easily achieved by re-

Near-Term Distributed Simulation of Apparel Manufacturing

quiring that all workstations that pick from a common buffer be
simulated in a single processor. Each processor has a single pro-
cess, a single event queue, and a single logical clock. The event
queue is stored in ascending order and, as a result all events
within (and resultant messages from) a processor are in logi-
cal time sequence. Each node processor goes through the event
queue, generating new events for itself ancfother processors, until
the end of the simulation period.

Subassemblies may flow from a buffer in one processor to a
buffer in a different processor. Buffers in a processor which can
receive subassemblies from another processor are called Front
Buffers. For correct conservative simulation, a processor can-
not proceed if there is a possibility of receiving a subassembly
message from a predecessor processor at an earlier clock time.

This means that if correct time synchronized simulation is to be
uaranteed, all Front Buffers of a processor must be non-empty
?other buffers may be empty) before a processor advances its
simulation clock. One way to handle this is for predecessor pro-
cessors to send NULL messages to successor processors. However,
source-driven NULL messages are likely to flood the system, as
reported by Fujimoto [IQSSﬁA An alternative approach is: if the
Front Buffer of a processor becomes empty, the processor sends
out appointment-request messages to its predecessors. The pre-
decessors then make an estimate based on their current statuses
and send appointments to the requesting processor, thereby en-
abling it to proceed. This demand-driven method, described by
Khambekar and Dharmaraj {1990], is an adaptation of the ap-
pointment approach presented by Nicol and Reynolds [1984] and
Nicol [1988]. In terms of the design space outlined by Reynolds
(1982], this method is accurate, non-aggressive, has no risk, and
employs knowledge acquisition and knowledge embedding.

Subassemblies have user-assigned priorities and are arranged
in the buffer queues according to their priorities and arrival times.
Occasionally, two or more subassemblies must merge into one.
For example, fronts and backs must merge to form a complete
shirt. Hence, the mere arrival of a subassembly in a buffer does
not guarantee that it is ready for processing; it may have to wait
for its companion subassembly to arrive at the same buffer. In-
formation on the flow of companion subassemblies is extracted
and stored in compressed form prior to the start of the simu-
lation. A simulation node ready to select a subassemnbly must
scan the buffer queue, skipping over all unmatched companion
subassemblies.

The service time for an operation ira subassembly is calcu-
lated from the pre-engineered Standard Allowed Minutes (SAMS%
and the efficiencics of the employees. For example, if the SAM
value of an operation is 5 minutes and an employee has an effi-
ciency of 110% (better than average), then the service time for
this employee working on this operation is 5/1.1 = 4.55 minutes.
The completion time of the simulated operation is computed and
an event is added to the event queue,

Subassemblies usually flow from one operation to another;
however, sometimes there are alternate paths available for the
subassembly. For example, instead of performing two consecu-
tive operations on two slow older machines, it may be possible
to combine both operations on one fast, newer machine. When
alternate paths are available, a subassembly is sent along the
path with the smallest wait-queue. This implies that the path of
the subassembly must be determined at runtime, i.e., determin-
ing the successor buffer (which buffer to send the subassembly to
next) is determined on-the-fly by examining the wait-queues of
all the successor buffers. If the selected successor buffer happens
to be in the same processor, then the subassembly is sent directly
to the buffer; otherwise, additional table look-up is necessary to
determine the successor processor, and a subassembly message is
sent to that processor.

When an operation completion event occurs, the processor
calculates all contributions to the collection of metrics. Results

are stored in local memory. After a predetermined interval of
simulated time, the processor sends the accumulated metrics to
the root Transputer. The root accumulates these in its own global
set of metrics. When all processors have sent metric values for a
single time interval, the root computes a set of secondary metrics
(means, variances, plant-wide totals) and sends the entire list of
metric information to the host PC for immediate display.

618

6. SUMMARY

This paper describes a near-term simulator for use in schedul-
ing production in an apparel manufacturing plant.

In the Introduction, we set four objectives for the simulator:
accuracy of simulation, interactive and iterative use, wide appli-
cability and ease of use. We feel these goals are being met. This
simulation is accurate because little information is estimated.
Current and historical data obtained from a real-time control
system are used, rather than statistical distributions to estimate
such things as rate of arrival of goods and employee skill level.
Interactive and iterative use is due, in large part, to the division
of tasks among multiple processors. The very short response time
which results encourages the user to sit before the monitor and
work with the simulator. Wide applicability is achieved because
of the large number of performance metrics made available to the
user. The user selects as many of the metrics as he or she feels
are important in planning shop-floor operations. Finally, ease of
use is a result of the graphics windowing system available; the
user views many performance metrics changing over time.

We believe that this simulation will be a valuable tool for a
manager of shop-floor operations.

ACKNOWLEDGEMENT

This research was sponsored in part by the Defense Logistics
Agency under Contract No. DLA900-87-D-0017 Task No. 0003
through the Clemson Apparel Research Center.

REFERENCES

Bryant, R.E. (1977), “Simulation of Packet Communication Ar-
chitecture Systems,” Technical Report MIT/LCS/TR-188,
MIT, Cambridge, MA.

Chandy, K.M. and J. Misra (1979), “Distributed Simulation: A
Case Study in Design and Verification of Distributed Pro-

rams.” EEE Transactions on Software Engineering SE-5,
, 440-452.

Foxfire Technologies Corporation (1989), Real-time Shop-Floor
Control System User Manual, Marietta, GA.

French, S. (1982), Sequencing and Scheduling: An Introduction
to the Mathematics of the Job-Shop, Ellis Norwood, London.

Fujimoto, R.M. (1988), “Performance Measurements of Distrib-
uted Simulation Strategies,” In Proceedings of the 1988 SCS
Multiconference on Distributed Simulation, San Diego, CA,

14-20.

Jefferson, D.R. (1985). “Virtual Time,” ACM Transactions on
Programming Languages and Systems 7, 3. 404-425.

Khambekar, P.K. and S.K. Dharmaraj (1990). ~Approaches to
Solving Synchronization Problems in Parallel Simulation of
an Apparel Plant,” In Proceedings of the 1990 ACM South-
east Regional Conference, C.M. Pancake and R.M. Geist,
Eds. ACM, Greenville, SC, 274-281.

Nicol, D.M. and P.F. Reynolds (1984), “Problem Oriented Pro-
toco! Design,” In Proceedings of the 1984 Winter Simulation
Conference, S. Sheppard, U. Pooch, and D. Pegden, Eds.
IEEE, Dallas, TX, 471-476.

Nicol, D.M. (1988), “Parallel Discrete-Event Simulation of FCFS
Stochastic Queuing Networks,” In Proceedings of the 1988
ACM SIGPLAN P%"’EA LS, Yale University, New Haven, CT,

124-137.
Peacock, J.K., J. W. Wong, E.G. Manning (1979), “Distributed

Simulation Using a Network of Processors.” Computer Nel-
works 3, 1, 44-56.

Peck, J.C., R.P. Pargas, P.K. Khambekar, and S.K. Dharmaraj
(1990), “Shop-Floor Performance Metrics for the Apparel In-
dustry.” Submitted to the International Journal of Clothing
Science and Technology.

Reynolds, P.F. (1982), “A Shared Resource Algorithm for Dis-
tributed Simulation.” In Proceedings of the .Ninth Annual In-
ternational Computer Architecture Conference, Austin, Tex-
as, 259-266.

Rinnooy Kan, A.H. (1976), Machine Scheduling Problems: Class-
ification, Complezity and Compulations, Martinus Nijhofl,
The Hague.

Appendix D

Artificial Intelligence
and Simulation

Proceedings of the Simulation MultiConference on
Artificial Intelligence and Simulation
1-5 April 1991
New Orleans, Louisiana

Edited by
Ranjeet J. Uttamsingh
Synetics

A. Martin Wildberger
General Physics

Simulation Series
Volume 23
Number 4

Sponsored by
The Society for Computer Simulation (SCS)

MNerc 1
£

> 4 e i Ve e
33 SN A Y R

VIC VPG

35 > (ARG GO N

SOLVING SYNCHRONIZATION PROBLEMS IN RAPID SIMULATION
OF A MANUFACTURING SHOP-FLOOR

John C. Peck, Roy P. Pargas, Prashant K. Khambekar, Satish K. Dharmaraj
Department of Computer Science
Clemson University
Clemson, South Carolina 29634-1906

ABSTRACT

This paper describes a solution to synchronization
problems which arise in rapid near-term sir 1lation of
manufacturing. The purpose of the simulator is to pro-
vide management with a tool for use in creating and
evaluating schedules as part of production planning. In
order to run as accurate a simulation as possible, data
describing the current status of the manufacturing plant
is continually collected by a real-time shop-floor con-
trol system. This data is used to start the simulator
in an initial state. Performance of the simulation with

quick run-time strongly suggest a parallel implementa-

tion; T-800 INMOS transputers are used with a PC as
a front-end processor. Unlike a single processor simula-
tion, a parallel simulation gives rise to synchronization
problems, deadlock and starvation. These problems are
analyzed and solutions which enable an accurate, con-
servative simulation are presented.

INTRODUCTION

Apparel plants operate on 2 larger scale than man-
ufacturing plants in many other industries. A typical
apparel plant may have more than 400 direct labor (in-
centive) employees with perhaps 500 machines (some
large plants have 1500+ employees and a correspond-
ingly larger number of machines). Both employees and
machines are capable of performing multiple operations,
but only a small percentage of the total operations are
required to manufacture a particular garment. Active
on the shop-floor at any one time might be 100 or more
production lots (orders) each consisting of perhaps 200
bundles of garment parts, each bundle consisting of five
or more subassemblies, each subassembly requiring one
to twenty operations. Production lots are possibly of
different styles, meaning the operations and sequencing
of operations are different. Bundle subassemblies flow
through the manufacturing process in parallel and join
(merge), as operations are completed, to produce fin-

ished garments. The correct matching of subassemblies
from parent bundles is important since color shading
variations will be noticeable otherwise. Production lots
have due dates by which they must be shipped out. Since
employees and machines have multiple, but limited, skills
and capabilities, balancing these resources against re-
quired work, that is, developing an operational plan, is
a major problem.

The ultimate goal in production scheduling is to
improve the operation of a plant. The primary question
is “How does one know if a change in an operational
plan produces a better or worse schedule?” A near-term
simulator of shop-floor operations of an apparel manu-
facturing plans has been developed to enable the man-
ager to evaluate such a plan. High-level performance
information in the form of graphics is continuously dis-
played. The manager can evaluate the plan and in case
the performance metrics are not satisfactory, rerun the
simulation with a new plan, all in a matter of minutes.
Details of the simulation can be found in Pargas et al.

1990.

Rather than using statistical distributions to es-
timate crucial input information (which many simula-
tions do) the near-term simulator uses a real-time system
(Foxfire 1989) to measure, in advance, information such
as the rate of arrival of goods to be processed, processing
rates of different machines and efficiencies of employees.
Thus the question of accuracy of estimates does not arise.

Since production goals, such as keeping inventory
low or machine utilization high, vary from plant to plant,
or indeed, from time to time in the same plant, and man-
agement styles vary from person to person, a large num-
ber of performance metrics are made available. A man-
ager may select and observe any of the metric graphs on
the front-end and optimize performance based on them.
The sixty or so metrics fall into different classes: Cost,
Production, Efficiency, Lateness, Labor utilization and
Waiting Time (Peck et al. 1991).

The complexity of the application, large input data,
large number of metrics and quick simulation require-

ment necessitate a parallel simulation. The implemen-
tation is done on a multiprocessor system built by Com-
puter Systems Architects of Provo, Utah. It consists of
17 INMOS T-800 Transputers, each with 2 Mbytes of
memory. The Transputers integrate a 32-bit processor,
a 64-bit floating point unit and 4 Kbytes of static RAM,
One of the Transputers (called the root) is connected to
a standard PC front-end whereas the other 17 Trans-
puters are networked among themselves and connected
to the root.

A major design decision was to break up the major
functions of the simulation among the processors avail-
able. The primary functions are input and output, ex-
ecution of the simulation itself and collection and pro-
cessing of performance metric data. A natural assign-
ment of functions to processors was to assign all in-
put/output functions (that is, inputting the data and
displaying graphs) to the front-end PC, the simulation
to the Transputer nodes, and the collection and process-
ing of metric data to the root Transputer. The design is
clean: the user is unaware of the Transputers, the pro-
gram on the PC is independent of the number of Trans-
puters and the simulation program on the Transputers is
independent of the front-end. The Transputer nodes ex-
ecute a distributed event-driven simulation and exploit
the natural parallelism on the shop-floor. Distributed
simulation gives rise to synchronization problems, dead-
lock and starvation. The solution to these problems is
presented in this paper.

THE APPAREL PLANT SHOP-FLOOR

Bundles of garment parts are sewn according to
their respective style (operation) flow graphs. Figure 1
shows two style flow graphs. The circles represent op-
erations to be performed, for example, operation 17 is
“hem placket” and operation 41 is “top-stitch pocket”.
On the shop-floor each operation has a buffer and one
or more workstations are configured to perform that op-
eration. When employees are assigned to a workstation,
a bundle is extracted from the workstation’s buffer, the
operation is performed and then the bundle is sent to the
buffer corresponding to the next operation in the style
flow graph.

Bundles carry with them the expected processing
time for each operation in the style graph. This time,
called Standard Allowed Minutes (SAMS), is obtained
from engineering time-motion studies. Employees differ
in their efficiency of performing operations. Efficiency is
defined as the ratio of SAMS to actual minutes and can
be above or below 100%. Hence, although the SAMS
value of an operation is known in advance, the actual

service time depends on which employee picks up the
bundle, and is only available when the processing of the
bundle is simulated.

There are three types of events: dundle events such
as the completion of an operation or the arrival of a pro-
duction lot, employee events such as an employee signing
in for work or an employee being reassigned to another
workstation, and workstation events such as a worksta-
tion being reconfigured for a different type operation.
The most common event is the completion of an opera-
tion.

PARALLEL SIMULATION

For the simulation, operations are mapped to pro-
cessors in the transputer system. A processor may sim-
ulate one or more operations. Each operation’s buffer is
represented by a queue and bundles are picked from the
queue in order of priority and in case of equal priority,
in order of time of arrival.

For correct simulation workstations configured for
the same operation (and so drawing from the same
buffer) must coordinate. This is most easily achieved by
requiring that all workstations configured for the same
operation be simulated in the same processor. Activi-
ties of all employees assigned to such workstations are
also simulated in the same processor. Thus each pro-
cessor has its independent queue of events and performs
event-driven simulation synchronized by a logical clock.
The logical clock is defined as the time of the last event
processed by the processor.

A majority of researchers in distributed simulation
use a logical process for each real process (e.g., worksta-
tion) in the application. Each logical process communi-
cates with other logical processes. However as has been
shown by Nicol (Nicol 1988), if the number of logical
processes is greater than the number of physical proces-
sors, an overhead of context switching is experienced and
efficiency is reduced. Hence in this simulation buffers,
workstations and employees in one processor are han-
dled by a single process. Since the event queue is stored
in ascending time order all events within (and resultant
messages from) a processor are in logical time sequence.

Transputer processors communicate with each
other using messages. All messages are time.stamped,
that is, they carry the logical clock time at which the
sending processor issued the message. The majority of
interprocessor messages are bundle messages which in-
dicate the transfer of a bundle from one processor to a
buffer in another processor for further processing accord-
ing to the bundle’s style low graph. The sending proces-
sor is called the predecessor and the receiving processor

Style 1

Style2

Figure 1: Typical Style Flow Graphs

is called the successor.

Although each style flow graph is feed-forward and
has no cycles, the intersection of styles gives rise to cy-
cles. As an example, in style 1 of Figure 1 operation
41 precedes operation 8 which precedes operation 45. In
style 2 operation 45 precedes operation 41. Thus 41, 8
and 45 form a cycle of operations in the merged style
graph. If such cycles were small, that is, composed of
less than 8 operations (as compared to the total num-
ber of operations being in the range of 100), then op-
erations which form cycles could all be mapped to the
same processor, thus giving rise to a cycle-free intercon-
nection among processors. Indeed this was the initial
expectation (Khambekar and Dharmaraj 1990). How-
ever, examining the style flow graphs reveals that this is
not feasible. Figure 2 shows the result of intersecting 21
style flow graphs. All operations in the big oval form a
single cycle; thus 33 out of the 42 operations are involved
in a cycle. Hence, cycles between processors cannot be
avoided unless 75% or more of the simulation is per-
formed in a single processor. As a means of distributing
the workload, operations are mapped to processors such
that the processors have equal number of operations.

SYNCHRONIZATION PROBLEMS

Since each processor has an independent event
queue and logical clock, it is possible that the logical

clock of a predecessor is greater than, equal to or less
than the logical clock of the successor. If the logical
clock of the predecessor is less than that of the succes-
sor, a message sent by the predecessor will arrive in the
successor’s simulated past and either compromise the ac-
curacy of the simulation or incur additional overhead
to undo earlier events. Accordingly, there are two ap-
proaches: Optimistic approaches (Jeflerson 1985; Sokol
et al. 1988) allow messages to arrive in the simulated
past and in case such a message arrives, a roll-back of
the simulation is initiated back to the time in the mes-
sage. Conservatlive approaches prevent events from exe-
cuting out of time sequence. Optimistic approaches in-
volve keeping the state of the simulation at every step
and sending anti-messages to cancel the effect of ear-
lier non-chronological actions. Since keeping the states
is memory-intensive and the amount of memory in each
transputer is limited (compared to the complexity of the
application) and virtual memory is not available, a con-
servative simulation approach was selected. Therefore,
before a processor can select the next event, it must know
that none of its predecessor processors will send a mes-
sage with a lesser time-stamp. This restriction can cause
the processor to wait for messages till the message time-
stamps are equal to or greater than the time of the next
event.

Two synchronization problems can occur with this
conservative approach: deadlock and starvation (no-

Figure 2: Composite Graph from Intersection of 21 Styles.

progress). Deadlock is the state in which a collection
of processors cannot progress because they are cyclically
waiting for input from one another. Starvation is the
state in which some processors cannot progress because
they are waiting for input from other processors (al-
though the latter could be progressing normally). Dead-
lock arises if cycles are present in the flow graphs of the
processors sending messages or if virtual “waiting” cy-
cles may form due to finite buffers. Starvation is possible
even if there ate no cycles and buffers are infinite.

There are a number of approaches to solve the syn-
chronization problems, many of which are described in
an early survey by Misra (Misra 1986). In case of dead-
lock, Chandy and Misra (Chandy and Misra 1981) and
Chandy, et al. (Chandy et ol 1983) suggest deadlock
detection approaches, which let deadlock occur, detect
it and then break it using collective global information.
The former uses a central controller whereas the latter
sends out queries for deadlock detection. However, sev-
eral studies (Fujimoto 1988, Reed et al. 1988, Reed and
Malony 88) indicate limited speed-up. These approaches
do not address the starvation case.

The Null Message approach was developed indepen-
dently by Bryant (Bryant 1977), Chandy-Misra (Chandy
and Misra 19792; Chandy and Misra 1979b) and Peacock
et al. (Peacock et al. 1979a, Peacock et al 1979b). Mes-
sages which contain the current simulation time are sent
from each processor to its successors so that the suc-

cessors may proceed. However, the look-ahead provided
by these null messages is limited (Peacock et al 1979b,
Nicol 1988) and studies show that choking of the simu-
lation due to excessive null messages is likely (Fujimoto
1988, Reed et al. 1988, Reed and Maloney 88). (How-
ever, the studies were done on shared memory machines
so the application of their results to distributed machines
is subject to question.)

Peacock, et al. (Peacock et al. 19792) also suggest
a Blocking Table approach in which a processor blocks
when the time of any of its predecessors is less than
its own. However this approach involves one-to-many
broadcasts to keep the tables current. Bezivin and Im-
bert (Bezivin and Imbert 1982) proposed a monitor ap-
proach and Christopher et al. (Christopher et al 1982)
a transaction based approach. Both involve centralized
controllers which can be bottlenecks in a distributed sys-
tem.

In the Appointment approach (Nicol and Reynolds
1984), processors demand appointment times from their
predecessors and cannot simulate beyond the smallest
of these times. The demand-driven Appointment ap-
proach has the advantage that it avoids unnecessary mes-
sages. Nicol (Nicol 1988) develops appointments further
and provides greater look-ahead by doing application-
dependent calculations. In case of stochastic networks,
the service time is sampled probabilistically and it can
be sampled even before the job arrives at the proces-

sor. Thus one can have a future list of events and higher
appointment bounds, but its applicability is limited.

THE METHOQD USED: APPOINTMENTS

In the near-term simulation described in this paper
cycles between processors cannot be avoided. Starva-
tion is also a concern since the output metrics cannot
be obtained speedily if starvation occurs. Deadlock de-
tection approaches to solving synchronization problems
were deemed infeasible since they cannot prevent star-
vation. Null Messages were ruled out because of their
limited look-ahead and probable choking. Monitor and
transaction approaches were ruled out because of the
possibility of bottlenecks.

Nicol and Reynolds' appointment approach seemed
most promising and was adapted and enhanced for the
near-term simulation. When a processor cannot make
progress because of the unavailability of an event mes-
sage from a predecessor, i sends a request message to
that processor. The predecessor processor responds with
an appointment time. Based upon the received appoint-
ment time the impeded processor may be able to process
some buffered events and make progress.

The appointment time sent is not merely the cur-
rent simulated time but rather is a time obtained by
examining the buffers and the bundles in the processor.
This application-dependent appointment time (similar
to Nicol (Nicol 1988)) provides a good look-ahead.

When a request is sent by processor P; to a pre-
decessor processor P; the next event time, t, to which
P; desires to advance is sent in the request. F;, thus,
only has to check its buffers for events which will com-
plete before t. This saves P; from having to check its
entire buffer list. If an appropriate event destined for P;
is found by P; then the time of that event is sent as an
appointment. If there is no event which can complete
before t, then P; replies with a “you can proceed” mes-
sage. If P; has no pending event destined for P; it sends
a “failed” message.

P; sends requests to those of its predecessors from
whom it has no buffered messages. If the received mes-
sages are “you can proceed” messages or appointments,
P; can advance its clock to the smallest received appoint-
ment. If all the received messages are “you can proceed”
then P; can advance its clock to t. Upon receiving any
“failed” messages, P; waits for a small amount of time
and restarts sending requests.

With this approach both deadlock and starvation
are prevented. In terms of the design characteristics out-
lined by Reynolds (Reynolds 1988), this method is ac-
curate, non-aggressive, has no risk and employs knowl-

edge acquisition and xpowledze embedding. It 1s non-
aggressive because events are always processed in in-
creasing time order and not on conditional knowledge.
As aresult the method is accurate; events are ultimately
processed in increasing time order. There is no risk;
events based on conditional knowledge are not propa-
gated because there are no such events. Knowledge ac-
quisition is used since the processors initiate requests for
knowledge from other processors. Knowledge embedding
is utilized because knowledge about the applications be-
havioral attributes is embedded in the simulation.

CONCLUSION

The complexity and performance requirements of
the near-term simulator strongly suggest a parallel sim-
ulation. Unlike a single processor simulation, a parallel
simulation givest’ :to synchronization problems. These
problems have been analyzed and an approach which en-
ables an accurate, conservative simulation has been pre-
sented. The simulator has been completely implemented
and real data obtained from an apparel plant is currently
being processed. A pilot installation in a production ap-
parel plant is expected to begin in summer 1991.

Future research will investigate algorithms for dy-
hamically balancing the load across the processors of the
transputer system. This balancing will be achieved by
remapping operation buffers to processors with expected
improvement in performance.

REFERENCES

Bezivin, J. and H. Imbert. 1982. “Adapting a Sim-
ulation Language to a Distributed Environment”. In
Proceedings of the 8rd International Conference on Dis-
tributed Computing Systems, (Ft. Lauderdale, FL),
IEEE, N.Y., 596-603.

Bryant, R.E. 1977. “Simulation of Packet Commu-
nication Architecture Systems”. Technical Report.
MIT/LCS/TR-188, MIT, Cambridge, MA, (Nov.).

Christopher, T.; M. Evens; R.R. Gargeya; and T. Leon-
hardt. 1982. “Structure of a Distributed Simulation
System”. In Proceedings of the 3rd International Con-
ference on Distributed Computing Systems (Ft. Laud-
erdale, Fl1.), IEEE, N.Y., 584-589.

Chandy, K.M.; L.M. Haas; and J. Misra. 1983. “Dis-
tributed Deadlock Detection”, ACM Transactions on
Computer Systems 1, no. 2 (May), 144-156.

Chandy, K.M. and J. Misra. 1979a. “Distributed Sim-

e e e s b ad A b PR IT A S

;(
i
I

ulation: A Case Study in Design and Verification of
Distributed Programs”, [EEE Transactions on Software
Engineering SE-5, no. 5 (Sep.), 440-452.

Chandy, K.M. and J. Misra. 1979b. “Deadlock Absence
Proofs for Networks of Communicating Processes”, In-
formation Processing Letters 9, no. 4 (Nov.), 185-189.

Foxfire Technologies Corporation. 1989. Real-time
Shop-Floor Control System User Manual, Marietta, GA.

Fujimoto, R.M. 1988. “Performance Measurements of
Distributed Simulation Strategies”. In Distributed Sim-
ulation 1988: Proceedings of the SCS Multiconference on
Distributed Simulation (Feb. 3-5), SCS, San Diego, CA,
14-20. .

Jefferson, D.R. 1985. “Virtual Time”, ACM Transac-
tions on Programming Languages and Systems 7, no. 3
(Jul.), 404-425.

Khambekar, P.K. and S.K. Dharmaraj. 1990. “Ap-
proaches to Solving Synchronization Problems in Par-
allel Simulation of an Apparel Plant.” In Proceed-
ings of the 1990 ACM Southeast Regional Conference
(Greenville, SC, April 18-20), ACM, N.Y., 274-281.

Misra J. 1986. “Distributed Discrete-Event Simulation”,
ACM Computing Surveys 18, no. 1 (Mar.), 39-65.

Nicol, D.M. and P.F. Reynolds. 1984. “Problem Ori-
ented Protocol Design.” In Proceedings of the 1984 Win-
ter Simulation Conference (16th) (Nov. 28-30), 471-476.

Nicol, D.M. 1988. “Parallel Discrete-Event Simulation of
FCFS Stochastic Queueing Networks.” In Proceedings of
the ACM SIGPLAN PPEALS 1988 (Jul.), 124-137.

Pargas, R.P.; J.C. Peck; P.K. Khambekar; and S.K.
Dharmaraj. 1990. “Near-term Distributed Simula-
tion of Apparel Manufacturing.” In Proceedings of the
1990 Winter Simulation Conference (New Orleans, LA,
Dec. 9-12), SCS, San Diego, CA, 614-618.

Peck, J.C.; R.P. Pargas; P.K. Khambekar; and S.K.
Dharmaraj. 1991. “Shop-Floor Performance Metrics for
the Apparel Industry.” Submitted to the International
Journal of Clothing Science and Technology.

Peacock, J.K.; J.W. Wong; and E.G. Manning. 1979a.
“Distributed Simulation Using a Network of Processors”,
Computer Networks 3, no. 1, 44-56.

Peacock, J.K.; J.W. Wong; and E.G. Manning. 1979b.
“A Distributed Approach to Queueing Network Simu-
lation.” In Proceedings of the 1979 VVinter Simulation
Conference (San Diego, CA), IEEE, N.Y., 399-406.

Reed, D.A.; A.D. Malony; and B.D. McCredie. 1988.
“Parallel Discrete Event Simulation Using Shared Mem-
ory”, IEEE Transactions on Software Engineering SE-
14, no. 4 (Apr.), 541-553.

Reed, D.A. and A.D. Malony. 1988. “Parallel Discrete
Event Simulation: The Chandy-Misra Approach.” In
Distributed Simulation 1988: Proceedings of the SCS
Multiconference on Distributed Simulation (Feb. 3-5),
SCS, San Diego, CA, 8-13.

Reynolds, P.F. 1988. “A Spectrum of Options for Paral-
lel Simulation.” In Proceedings of the 1988 Winter Sim.-
ulation Conference, (Dec.), 325-332.

Sokol, L.M., D.P. Briscoe; and A.P. Wieland. 1988,
“MTW: A Strategy for Scheduling Discrete Simulation
Events for Concurrent Execution.” In Distributed Simu.
lation, 1988: Proceedings of the SCS Multiconference on
Distributed Simulation (Feb. 3-5), SCS, San Diego, CA,
34-42.

BIOGRAPHY

John C. Peck is a Professor of Computer Science at
Clemson University. He received a B.S. in Mathematics,
and M.S. and Ph.D. degrees in Computer Science, all
from the University of Southwestern Louisiana. His re-
search interests are in database systems and distributed
algorithms. He is currently involved in developing sup-
port systems for manufacturing for the Defense Logistics
Agency. He is also Vice-President for Reseatch and De-
velopment of Foxfire Technologies, Inc. a company that
designs real-time shop-floor control applications for the
apparel industry.

Appendix E

GUIDELINES FOR DYNAMIC LOAD BALANCING
IN CONSERVATIVE DISTRIBUTED SIMULATIONS

Roy P. Pargas and Prashant K. Khambekar
Department of Computer Science
Clemson University

Clemson, South Carolina 29634-1906

ABSTRACT

The problem of dynamically load balancing a dis-
tributed or parallel algorithm is difficult in and of it-
self. It becomes even more difficult when applied to
a conservative distributed simulation primarily due to
distributed logical clocks among the processors. Load
cannot be arbitrarily transferred from one processor to
another without first coordinating the respective clocks.
The problem therefore is threefold: the distributed dy-
namic load balancing programs must monitor the proces-
sors for possible load imbalance, must collectively decide
whether or not to balance load, and (if the decision is
positive) must coordinate the clocks of the processors
involved before transferring load. This paper addresses
this issue and provides guidelines suggesting when and
how dynamic load balancing of conservative distributed
simulations may be carried out. Initial results of exper-
imental runs are encouraging.

INTRODUCTION

In recent years, there has been growing interest
in distributed simulations, i.e., simulations implemented
on multiprocessors. This is partly due to the increased
availability of relatively inexpensive multiprocessor sys-
tems, but mostly due to the need of increasingly sophisti-
cated simulations for greater processing power (Chandy,
Holmes and Misra 1979; Misra 1986; Nicol and Reynolds
1984; Pargas et al. 1990, Reed, Malony and McCredie
1988). It has been shown that dynamic load balanc-
ing can improve performance of parallel applications
(Dragon and Gustafson 1989, Hinz 1990, Lin and Keller
1987, MaTM 1988, Saletore 1990, Shin and Chang 1989,
Stankovic and Sidhu 1984, Willebeek-LeMair and Reeves
1989, Wu and Shu 1991) by moving load from a heavily
loaded processor to a lightly loaded one. However, sur-
" prisingly little research has been conducted on applying
dynamic load balancing techniques to distributed simu-
lations. Because of temporal relationships among pro-

cessors, the problem of load balancing a distributed sim-
ulation dynamically is much more difficult than load bal-
ancing other parallel algorithms. This paper attempts
to provide guidelines suggesting when and how dynamic
load balancing may be carried out.

A SMALL EXAMPLE

Consider the simulation example shown in Figure 1.
The rectangles represent two processors, A and B (Fig-
ure 1a). Processor A has four job queues (Q1-Q4) and
Processor B has one (Q5). Constant service times are
given in parentheses. The arrows indicate the flow of
jobs from one queue to the next. Fach event is assumed
to take the same amount of CPU time to process. Ql
and Q3 are assumed to have sufficient number of jobs in
their queues at the start of the simulation and the other
queues are empty.

Figure 1b gives a possible sequence of steps that
processors A and B execute to process their job queues.
The first column shows real-time units; the CPU requires
one real-time unit to process each job. The columns
“opn” refer to queues and the processing of jobs from
each queue and the columns “l¢” indicate the logical
clocks. For example, the first job processed by A is a
job from Q1 (opn=1) and completes at time lc=3. This
is followed by a job from Q3 which completes at time
le=4. The third job is again from Q1 which completes
at time 6. Two jobs complete at time 8, one from Q2
and another from Q3. The job from Q2 was the result
of work passed to Q2 from Q1 at time lc=3.

Processor B works on only on jobs from Q5. The
sequence of operations shows that processor B initially
has to wait idly for a job from processor A and cannot
perform useful computation until real time step 8. A
total of 19 real time units is required for processors A
and B to reach simulated times 23 and 24, respectively.
If, however, Q4 is moved from processor A to processor
B at real time 5 (Figure 1c), processor B is able to start
performing useful computation sooner and processor A

reaches simulated time 23 after only 16 real time units.
Moreover, processor B has gone far beyond simulated
time 24. All in all, a significant improvement achieved
through the movement of one job queue from A to B.

Though this example had an obviously unbalanced
initial assignment of job queues to processors, the need
for reassignment of load is observed even in applications
where the initial assignment attempts to be equitable.
Dynamic load balancing or load sharing may improve
performance in such cases.

CLOCK CONSIDERATIONS

Moving a job queue from one processor to another
requires moving jobs having very definite times associ-
ated with them. A queue may not be transferred unless
the events in the queue are all scheduled in the receiving
processor’s future. Otherwise, the jobs will be processed
out of time order violating a principal rule of conser-
vative simulation. This problem is shown in Figure 2.
Processor A’s logical clock is at 12, past processor B’s
clock which is still at 10. This is possible because A’s
events are independent of B’s events and need not wait
for B’s events to complete. If a queue is moved from B to
A, it is possible that some messages received by proces-
sor C from processor A will be out of time order. In the
example, a message from A with time stamp 12 arrives
at C before a message with stamp 10. Note that the sec-
ond message came from the queue that was moved from
B to A. It is therefore necessary that if a queue is to be
moved from one processor to another, the clock of the
source processor should be greater than or equal to the
clock of the destination processor. If the sending proces-
sor’s clock is lagging, the receiving processor has to wait
(do nothing, waste CPU time) for the sending processor
to catch up and only then can a queue be transferred.

If we let Ic(A) and Ic(B) represent the logical clock
values of processors A and B, respectively, and if B wants
to transfer load to A, the role of the logical clock is sum-
marized as follows.

if lc(A) > le(B)

B requests A to suspend operations

B runs its clock forward to catch up with A’s clock
endif
B transfers load to A

DYNAMIC LOAD BALANCING: THREE CASES

We define dynamic load balancing as the movement
of load from one processor to another using information

currently available to either or both of the processors.
This definition therefore excludes the use of global infor-
mation or communication among three or more proces-
sors in arriving at the load balancing decision.

Since only two processors are involved in any single
load balancing decision, three cases are possible depend-
ing on job flow and the direction of job flow: (1) the
processors are mutually independent, (2) one of the pro-
cessors is dependent on the other, and (3) the processors
are mutually dependent on each other.

Case 1. Processors are mulually sndependent.

If the processors are mutually independent and, say,
A is leading (its logical clock is ahead of B’s clock), A
may potentially progress rapidly and complete the pro-
cessing of its events long before B. In this situation, mov-
ing load from B to A may improve overall performance
of the simulation.

How can A and B know that B’s clock is lagging?
Two possible ways are: (a) through periodic broadcast
by both processors of their logical clock times, or (b)
by having each processor pause and request the logical
clock time of the other processor if a predefined period
of time elapses without the processor having to suspend
operation. Strategy (a) essentially informs each proces-
sor of the progress, or lack thereof, of all of the other
processors. Strategy (b) assumes that if a processor is
uninterrupted in its processing of events for an extended
period of time, then it should check other processors’
statuses for possible load imbalance.

In either case, after processors A and B determine
that, say, B’s clock is lagging, they must decide whether
load balancing is appropriate. This decision may be
based on factors such as the difference between their log-
ical clock values and the number of queues in processor
B (recall that movement of load implies movement of
entire queues). If the decision is to perform load balanc-
ing, the clocks must be aligned as discussed in Section
III above: A must suspend operation while B processes
events and runs its clock forward until its clock either
equals or exceeds A’s clock; then B can transfer load to
A.

Note that this transfer could change the dependence
relationship between A and B, i.e., either or both pro-
cessors may now be dependent on the other.

Case 2. B is dependent on A (A => B). When job flow
can occur from processor A to processor B then progress
of B is dependent on messages from A. A is called a pre-
decessor of B and B is called a successor of A. For an
accurate conservative simulation, before a processor can
simulate an event and advance its clock it should know
that it will not get, from any of its predecessors, a mes-
sage that needs to be processed at an earlier simulated

time. One of the better ways of performing this synchro-
nization is by appointments (Nicol 1988). A processor
demands appointments from its predecessors and can-
not proceed beyond the smallest appointment received.
Predecessor processors compute appointments by look-
ing ahead based on their simulation state and predict-
ing the smallest time before which they will not send
a job message to the requesting successor. Good ap-
pointments enable a successor to proceed, possibly with
multiple events, without any waiting, whereas bad ones
cause it to wait idly till a suitable appointment or job
message is received.

Table 1 lists the possible load balancing decisions
for different situations when B is dependent on A. An
asterisk (*) means “don’t care” The first column asks if
B’s clock is lagging A’s clock or vice versa. The second
column, Number of Events, refers to the number of jobs
that have been serviced. (As an aside, note that we
assume that a job sitting in a queue may not be serviced
because there is no agent to perform the service on the
job. This is true in simulations of manufacturing plants,
for example, in which jobs enter a queue but no worker
is present at the workstation. The job remains in the
queue. Jobs which are serviced constitute events and
that is what we count in this column.) The third column
asks if B is frequently waiting for jobs or appointments
from A. The fourth column is the recommended load
balancing decision.

The primary, although not exclusive, factor deter-
mining whether or not to balance load is whether A’s or
B’s logical clock is lagging significantly behind the other
processor’s clock (the user defines what is and is not sig-
nificant). If no clock lags, no load transfer is necessary.
This is shown by the first line of Table 1 which indicates
that no matter what else is occurring, if neither A nor B
is lagging, no transfer is required.

If, on the other hand, A’s or B’s clock does lag,
then one should consider other factors before deciding
whether or not to transfer load. If A’s clock lags, the
lag can, generally speaking, be remedied by transferring
load from A to B. However, if B is not waiting, then
there should not be a transfer since B is busy, and A’s
bad appointments, if any, cannot be remedied as they
are not caused by B. If B is waiting, and A processes
either approximately equal or more number of events,
then the decision is to transfer job queues from A to B
since B is waiting. If B is waiting, and A processes less
number of events, then a transfer is not warranted since
B already more load.

If B’s clock lags, the lag can be remedied by trans-
ferring load from B to A. If A and B process approx-
imately equal numbers of events and B is waiting, the

decision is to transfer load from B to A in the hope that
after the transfer B will get better appointments from A.
However, if B is not waiting, then B does not need better
appointments and hence no transfer is warranted. If A
processes less number of events, then the load should be
transferred from B to A. If A processes more number of
events and B is waiting then the load should be trans-
ferred from A to B to give B some work instead of idly
waiting; however if B not waiting no load transfer should
take place.

Case 3. A and B are mutually dependent on each other
(A<= B).

When processors are mutually dependent on each
other both give appointments to each other and thus
may cause the other processor to wait depending on the
quality of the appointments.

Table 2 lists the possible load balancing decisions
for different situations. The first column asks if B’s clock
is lagging A’s clock or vice versa. The second column,
Number of Events, refers to the number of jobs that have
been serviced. The third column asks if A is frequently
waiting for jobs or appointments from B and the fourth
column asks if B is, similarly, frequently waiting for jobs
or appointments from A. The fifth column is the recom-
mended load balancing decision.

Again the primary factor determining whether or
not to balance load is whether A’s or B’s logical clock is
lagging significantly behind the other’s clock. If no clock
lags, no load transfer is necessary. If A’s clock lags and if
either A and B process equal number of events or A pro-
cesses more number of events than B, then the decision
is to transfer from A to B in the hope of remedying the
clock lag and also remedying bad appointments, if any.
If A processes less number of events then the decision
depends on whether A is waiting: if A is waiting load
can be transferred from B to A otherwise the decision is
not to transfer. The situation is symmetric if B’s clock
lags: if A processes equal or less number of events than
B then the decision is to transfer from B to A, otherwise
the decision depends on whether B is waiting.

RESULTS AND CONCLUSIONS

Dynamically load balancing a distributed simula-
tion is significantly more difficult than load balancing
most other distributed or parallel algorithms. This is
because of the temporal relationships among the proces-
sors. The decision to transfer load from one processor
to another is based on the differences in the logical clock
values of each processor as well as the amount of load
with each processor. It is not sufficient to base this de-
cision only on a processor’s current load but on its load

over some time interval. If a decision to balance load is
made, more overhead is required, this time in the form
of coordination of the logical clocks of the processors in-
volved. The processor sending load must have a logical
clock value greater than or equal to the logical clock of
the receiving processor before the load is transferred.

Despite the significant overhead in dynamically load
balancing a conservative distributed simulation, initial
experimental results obtained with a manufacturing sim-
ulation have been encouraging. In six experiments in-
volving 24 queues, 500 jobs, and 2 to 4 processors, dy-
namic load balancing algorithms produced an average of
8% percent improvement in CPU time. A detailed and
complete tabulation of the full suite of the results of the
experiments is currently being conducted.

REFERENCE

Chandy, K. M., V. Holmes and J. Misra. 1979. “Dis-
tributed Simulation of Networks”. Computer Nei-
works 3, no. 1 : 105-113.

Dragon, K. M. and J. L. Gustafson. 1989. “A Low-Cost
Hypercube Load-Balance Algorithm”. In Proceed-
ings of the Fourth Conference on Hypercubes, Con-
current Computers, and Applications (Monterey,

CA, Mar.) 583-589.

Hinz, D. Y. 1990. “A Run-time Load Balancing Strat-
egy for Highly Parallel Systems”. In Proceedings of
the Fifth Distribuled Memory Computing Confer-
ence (Charleston, SC, Apr.) 951-961.

Lin, F. C. H. and R. M. Keller. 1987. “The Gradient
Model Load Balancing Method”. IEEE Transac-
tions on Software Engineering SE-13, no. 1 (Jan.):
32-38.

Ma, R. P, F. Tsung and M. Ma “A Dynamic Load
Balancer for a Parallel Branch-and-Bound Algo-
rithm”. In Proceedings of the Third Conference on
Hypercube Concurrent Computers and Applications
(Pasadena, CA, Jan.) 1505-1513.

Misra, J. 1986. “Distributed Discrete-Event Simula-
tion”. ACM Computing Surveys 18, no. 1, (Mar.):
39-65.

Nicol, D. M. and P. F. Reynolds. 1984. “Problem
Oriented Protocol Design”. In Proceedings of the
1984 Winter Simulation Conference (16th) (Dallas,
Texas, Nov. 28-30) 471-476.

Nicol, D. M. 1988. “Parallel Discrete-Event Simula-
tion of FCFS Stochastic Queueing Networks”. In
Proceedings of the ACM SIGPLAN PPEALS (Par-
allel Processing: Ezperience with Applications, Lan-
guages and Systems) (Jul.) 124-137.

Pargas, R. P., J. C. Peck, P. K. Khambekar and S. K.
Dharmaraj. 1990. “Near-term Distributed Simula-
tion of Apparel Manufacturing”. In Proceedings of
the 1990 Winter Simulation Conference (New Or-
leans, LA, Dec 9-12) 614-618.

Reed, D. A., A. D. Malony and B. D. McCredie. 1988.
“Parallel Discrete Event Simulation Using Shared
Memory”. IEEE Transactions on Software Engi-
neering SE-14, no. 4, (Apr.): 541-553.

Saletore, V. A. 1990, “A Distributed and Adaptive
Dynamic Load Balancing Scheme for Parallel Pro-
cessing of Medium-Grain Tasks”. In Proceedings of
the Fifth Distributed Memory Computing Confer-
ence (Charleston, SC, Apr.) 994-999.

Shin, K.G. and Y. Chang. 1989. “Load Sharing in
Hypercube Multicomputers for Real-time Applica-
tions”. In Proceedings of the Fourth Conference on
Hypercubes, Concurrent Computers, and Applica-
tions (Monterey, CA, Mar.) 617-621.

Stankovic, J. A. and I. S. Sidhu. 1984. “An Adap-
tive Bidding Algorithm for Processes, Clusters and
Distributed Groups”, In Proceedings of the Fourth

International Conference on Distributed Computing
Systems 4, (San Francisco, CA, May) 49-59.

Willebeek-LeMair, M. and A. P. Reeves. 1989. “Dis-
tributed Dynamic Load Balancing”. In Proceedings
of the Fourth Conference on Hypercubes, Concur-
rent Computers, and Applications (Monterey, CA,
Mar.) 609-612.

Wu, M. and W. Shu. 1991. “Scatter Scheduling for
Problems with Unpredictable Structures”. In Pro-
ceedings of the Sizth Distributed Memory Comput-
ing Conference (Portland, OR, Apr.) 137-143.

